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Abstract
Pacemaker-accumulator (PA) systems have been the most popular kind of timing model in the half-century
since their introduction by Treisman (1963). Many alternative timing models have been designed predi-
cated on different assumptions, though the dominant PA model during this period — Gibbon and Church’s
Scalar Expectancy Theory (SET) — invokes most of them. As in Treisman, SET’s implementation assumes a
fixed-rate clock-pulse generator and encodes durations by storing average pulse counts; unlike Treisman’s
model, SET’s decision process invokes Weber’s law of magnitude-comparison to account for timescale-
invariant temporal precision in animal behavior. This is one way to deal with the ‘Poisson timing’ issue,
in which relative temporal precision increases for longer durations, contrafactually, in a simplified version
of Treisman’s model. First, we review the fact that this problem does not afflict Treisman’s model itself due
to a key assumption not shared by SET. Second, we develop a contrasting PA model, an extension of Killeen
and Fetterman’s Behavioral Theory of Timing that accumulates Poisson pulses up to a fĳixed criterion level,
with pulse rates adapting to time different intervals. Like Treisman’s model, this time-adaptive, opponent
Poisson, drift–diffusion model accounts for timescale invariance without first assuming Weber’s law. It also
makes new predictions about response times and learning speed and connects interval timing to the pop-
ular drift–diffusion model of perceptual decision making. With at least three different routes to timescale
invariance, the PA model family can provide a more compelling account of timed behavior than may be
generally appreciated.
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1. Introduction

Perhaps the most intuitive model of an animal’s internal clock is a simple pace-
maker-accumulator (PA) system: Discrete units of some physical quantity accumu-
late at a constant rate over the course of an interval. When the total sum reaches a
critical level, the animal behaves as if the interval is over. The PA approach seems
intuitive because we have lived for centuries with clocks that count oscillations of
pendula, or rotations of mainsprings, or reverberations of electrons.

Treisman’s (1963) PA model (hereafter denoted TPA) is the prototype PA model
of timing. It uses a pacemaker, whose pulses are accumulated by a counter and sent
to a store to encode durations. Critically, in TPA, the inter-pulse durations within
trials are correlated, with shorter-than-average durations in some trials, and longer-
than-average durations in others (Postulate 2, Treisman, 1963). In other words, the
pace of the pacemaker varies randomly across trials around a fixed average. As
shown in Treisman, this property of the TPA accounts for the strict form of ‘We-
ber’s law for timing’, a temporal analogue of Weber’s classic law of perception.

The classic form of this law purports to govern behavior in two-choice tasks re-
quiring subjects to decide which of two non-temporal stimuli has greater intensity
(e.g., heavier, brighter, etc.). Although Weber investigated perceptual representa-
tions by finding the just noticeable diffference between very similar stimuli, the law
can be restated as holding that accuracy is constant whenever the two comparison
stimuli are proportionally strengthened or weakened in intensity. This relationship
suggests a level of perceptual imprecision that is intensity-scale-invariant: specifi-
cally, the intensity estimates across repeated trials of a task are distributed so that
the standard deviation S of the estimates is a constant proportion of the average
estimate M . The coefffĳicient of variation (CV) of the estimates, S divided by M , is
therefore constant.

In Treisman (1963), the CV of human behavioral response times in timing tasks
was indeed found to be roughly constant across different durations in temporal
production, reproduction, decision and estimation tasks, although a correction
factor a was required in a generalized form of Weber’s law:

S = k · (M + a).

For durations ranging from 0.25 to 9 s, Treisman found k in the range 0.05–
0.1, a around 0.5, and M accurate but subject to some biases toward shorter or
longer estimates, depending on the procedure. One of the main empirical goals of
Treisman (1963) was to address the diversity of previous findings for which it was
not clear whether even this generalized form of the classic law held. His conclusion
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was that it did, and that there was little evidence for any local minimum of the CV
at any particular duration, as had been previously hypothesized.

Since Treisman (1963), experiments with non-human animals, for which verbal
and cognitive strategies such as counting would likely be minimized, suggested
even stronger support for the strict form of the law, S = kA (e.g., Gibbon, 1977,
among many subsequent replications, but see also Bizo et al., 2006, for some ex-
ceptions). Furthermore, Gibbon and colleagues frequently observed that the entire
distribution of response times, when divided by the mean response time, typically
superimposes with any other similarly normalized response time distribution from
the same experiment, regardless of the duration being timed (Gibbon et al., 1997).
This superimposition property is sometimes dubbed scalar invariance; for consis-
tency with the general use of the similar phrase scale invariance across disciplines,
we will use timescale invariance to refer to the same property.

1.1. The TPA Route to Timescale Invariance

In the TPA model, a duration T is timed by counting the pulses emitted by a pace-
maker. Treisman (1963) does not specify precisely what kind of pulse train is emit-
ted from the pacemaker, other than to state that the inter-pulse durations are highly
regular within trials. The TPA pacemaker has a fixed average rate, which is constant
within trials, but variable between trials.

The TPA account of Weber’s law for time presented in Treisman (1963; Equa-
tion [11]), assumes that the inter-pulse times are essentially identical and the pace-
maker is essentially periodic (Postulate 1), but with a different period in each trial
(Postulate 2). All inter-pulse durations within any given trial are almost the same.
Under this assumption, the standard deviation, across trials, of the sum of n inter-
pulse times, all of which equal the same random duration X, equals n times the
standard deviation of X. This follows from the variance formula for a constant,
n, and a random variable X: Var(nX) = n2 Var(X). Taking the square root gives
Std(nX) = nStd(X). Note the contrast from the case in which independent pulse
durations are added: in that case, the variance of the sum is the sum of the vari-
ances. If all inter-pulse durations have identical variances Var(X) across trials,
then the variance of the sum of n independent pulses is nVar(X); the n in this
case is not squared.

For the nearly-periodic TPA, different durations T are timed by counting dif-
ferent numbers, n, of the fixed-rate pacemaker’s pulses, which occur with average
inter-pulse duration equal to Mean(X). This process yields an estimate, T ′, of T ,
as follows: T ′ = ∑n

i=1 Xi . For this estimate, CV(T ′) = Std(T ′)/Mean(T ′) =
nStd(X)/(nMean(X)). The n cancels out of the numerator and denominator,
and the CV is thus constant for all T . A similar argument underlies Treisman’s
(1964) explanation of Weber’s law in its traditional, non-temporal context.

Later theories of timing, such as Scalar Expectancy Theory (SET; Gibbon, 1977)
and its information processing implementation (IPI; Gibbon & Church, 1984; Gib-
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bon, Church, & Meck, 1984), emphasized pacemakers with Poisson characteristics,
which emit highly irregular pulse trains. Inter-pulse durations in such models are
independent and exponentially distributed. For such models with independent
inter-pulse durations, the variance of the pulse counts is n ·Var(X), which implies:

CV(T ′) =
√

nStd(X)

(nMean(X))
= Std(X)√

nMean(X)
= · · ·

= Std(X)
/(√

Mean(X) · √n · Mean(X)
)

=
[
Std(X)/

√
Mean(X)

]
· 1/

√
T .

This behavioral pattern (Killeen & Weiss, 1987) is commonly known as Poisson tim-
ing (Gibbon & Church, 1984).

This decrease of the CV in proportion the square root of time is inconsistent
with the data, and requires an additional model component to account for the
strict form of Weber’s law for timing. In SET, therefore, Poisson PA estimates of new
durations are compared to memorized durations in a noisy way governed by We-
ber’s law for two-alternative choice; specifically, the comparison of pulse counts to
memory was taken to be performed in terms of the ratio of one count to the other.
Incorporating this discrimination pattern into SET’s memory comparison extends
Weber’s law for intensity discrimination into a law of timing. As Gibbon (1992)
points out, however, it must also be the case that the noise in the ratio compari-
son is large relative to the Poisson noise in the accumulator; otherwise, the Poisson
timing pattern will emerge.

It may therefore surprise some readers to discover that Treisman’s original
model works very well in accounting for strict forms of both the classic version
of Weber’s law for two-choice comparisons of stimulus intensity (Treisman, 1964),
and for Weber’s law for timing (Treisman, 1963), even when its high-correlation as-
sumption is weakened almost out of existence. As Treisman (1966) demonstrates
with computer simulations, correlation values within trials can be allowed to
shrink from 1 down to 0.001, and the model’s behavior still conforms to Weber’s law.
We have also conducted our own computer simulations of a Poisson PA timer that,
like TPA and SET, uses a simple pulse-count criterion for deciding the end of an
interval.1 Remarkably low correlation levels of 0.001 are sufficient to give a nearly
constant CV across different durations. For this model, SET’s memory comparison
noise is not needed to account for Weber’s law for timing; its ratio comparison rule
is therefore not the only way to account for timescale invariance.

Thus at least two modifications of the basic PA approach — pacemaker vari-
ance across trials in TPA and ratio-based memory comparison in SET — do a good

1 Matlab code for all simulations in the paper is available on the Web at: http://www.oberlin.edu/faculty/
psimen/GoldenAnniversaryCode.html

http://www.oberlin.edu/faculty/psimen/GoldenAnniversaryCode.html
http://www.oberlin.edu/faculty/psimen/GoldenAnniversaryCode.html
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job of accounting for empirically observed behavioral patterns. We will shortly pro-
pose a third modification that works just as well, that provides specific predictions
about the shape of response-time distributions, and that connects PA timing mod-
els to diffusion models, which arguably constitute the leading class of perceptual
decision making models in psychology and neuroscience at present.

1.2. Why Use Any Other Type of Model?

In addition to simplicity and intuitive appeal, linear PA models (i.e., PA models in
which the pulse-rate is constant within a trial) clearly have substantial explanatory
power. This makes the wide variety of nonlinear and/or non-accumulating alter-
natives striking (e.g., Ahrens & Sahani, 2011; Almeida & Ledberg, 2010; Grossberg
& Schmajuk, 1989; Haß et al., 2008; Karmarkar & Buonomano, 2007; Ludvig, Sut-
ton, & Kehoe, 2008; Machado, 1997; Matell & Meck, 2004; Miall, 1989; Shankar &
Howard, 2012; Staddon & Higa, 1996; Wackermann & Ehm, 2006, to name just a
few). Some of the motivation for developing alternative models may stem from
perceived weaknesses of PA models, especially more recent incarnations such as
SET (Gibbon, 1977; Gibbon et al., 1984).

We now consider a few possible objections to PA models, including objections
based on behavioral patterns that may seem to remain unexplained, and objections
based on a lack of neural evidence for the models’ components. In our view, these
objections either stem from misconceptions, or are at least as applicable to other
models of timing as they are to PA models.

1. Objections based on inadequately explained behavioral data:
1.1. Timescale invariance: As noted above, SET’s IPI accounts for timescale

invariance by deemphasizing the noisy pacemaker and adding the error
into counting through a ratio-comparison decision rule (Gibbon, 1992). It
thereby builds Weber’s law into the memory comparison process. Some re-
searchers find this fix unsatisfying (Staddon & Higa, 1999a), since it seems
to beg the question of the provenance of the memory-comparison noise
(Staddon & Higa, 1996; Wearden & Bray, 2001). Other accounts of Weber’s
law have famously been given — e.g., Fechner’s classic account, or Treis-
man’s (1964), or Link’s (1992), among many others — so it seems legitimate
to reduce an account of Weber’s law for timing to a more general account
of Weber’s two-choice law. Yet it is striking that SET’s account of timescale
invariance reduces to its model of decision processes, rather than to its
model of the pacemaker, and it is conceivable that this well known flaw
of the Poisson timing approach has cast doubt on the entire PA family. As
we show below, however, multiple types of Poisson process models can
account directly for timescale invariance without any appeal to memory
comparison noise or ratio comparisons.
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1.2. Bisection at the geometric mean: Another salient regularity in timed be-
havior is that animals often bisect two different durations near their ge-
ometric mean. This has been taken to favor a logarithmic internal rep-
resentation of time (Allan & Gibbon, 1991; Church & Deluty, 1977; Joze-
fowiez, Staddon, & Cerutti, 2009). Similarly, Weber’s law itself was long
taken as evidence for Fechner’s logarithmic representation of subjective
stimulus intensity (see, for example, the history of the Weber–Fechner law
recounted in Link, 1992). PA models with a fixed clock-speed cannot easily
account for bisection at the geometric mean, as the slower growth of error
that they entail would place the point of subjective equality (PSE) above the
geometric mean. Logarithmic coding is not, however, necessary to account
for bisection data — the generalized form of Weber’s law by itself requires
that PSEs range between the harmonic and arithmetic mean, depending
on the amount of constant error and the separation of the stimuli in these
tasks (Killeen, Fetterman, & Bizo, 1997). Furthermore, Balci et al. (2011)
showed that the PSE may depend on the task participant’s level of tempo-
ral precision, with the PSE of more precise timers nearer to the arithmetic
mean.

2. Objections based on the notion of neural implausibility:
2.1. Lack of evidence for brain localization: A remarkable feature of brain or-

ganization is that it is quite difficult to lesion the brain in such a way as to
selectively knock out an internal clock (e.g., Gooch et al., 2011). Evidence
linking timing to the basal ganglia, cerebellum, supplementary motor cor-
tex, parietal cortex, hippocampus, and more recently, primary visual cor-
tex and even the retina, suggests that timing capabilities are distributed
throughout the brain. Indeed, it seems distributed in such a diffuse, non-
modular way as to conform to Lashley’s early view of the brain as a func-
tionally undifferentiated mass of neural tissue, once past the relatively
well-defined input and output circuits (Uttal, 2008). How, then, could a
simple counting model be distributed across the brain? As demonstrated
in Simen et al. (2011b), the simple machinery of the new model we propose
could be instantiated throughout the brain.

2.2. Lack of plausibility of ramping activity over very long periods: Seung
(1996) and Wang (2002), among others, raised the issue of how neural
firing rates could plausibly ramp up linearly over the course of even a
one-second interval given the rapid dynamics of the neural membrane,
which fluctuates on a time scale better measured in milliseconds. Gibbon
et al. (1997) raised a similar challenge in discussing how neural imple-
mentations could employ precise, linear ramps over multiple seconds and
even minutes. Simen et al. (2011a) discussed how this precision-tuning
problem might be ameliorated, but it is clear that many researchers find
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long-duration ramping of neural activity difficult to accept. The necessary
experiments to test for such slow ramping, however, are much more diffi-
cult to run than ones to test for rapid ramping.

We have recently proposed a timing model that is a new variation on the PA
theme (Rivest & Bengio, 2011; Simen et al., 2011b). The primary difference between
this drift–difffusion model (DDM) of timing and the PA models just discussed is that
it adapts the rate of its pacemaker to time different intervals, leaving its pulse count
threshold fixed. In this respect, it shares the same defining feature as a third classic
PA model, the Behavioral Theory of Timing (BeT) model of Killeen & Fetterman
(1988). As we show, despite its apparently very different mathematical definition,
the new model we have proposed contains BeT as a special case.

In our view, the adaptive-pacemaker approach offers several possible advan-
tages over the adaptive-criterion approach of TPA and SET. One advantage is the
straightforward way in which the adaptive-pacemaker approach has been mapped
onto more explicitly neural substrates (Simen et al., 2011b). Another advantage is
the way in which long durations are encoded, namely, with low pacemaker rates,
as opposed to high pulse counts in TPA and SET. High pulse counts must be com-
pressed in some way to fit within whatever limited range is available in the brain.
Such compression is not implausible, but it seems to imply that the accumulation
component is (for better or worse) nonlinear, and specific compression schemes
have not been formalized for TPA or SET. A third advantage is the existence of an
explicit learning rule that can be applied to govern the pacemaker rate (Rivest &
Bengio, 2011; Simen et al., 2011b); such a rule is of course critical for the adaptive-
pacemaker approach, but some form of pacemaker control might also be seen as
necessary for the TPA/SET approach, because motivational factors in TPA (Treis-
man, 1963, Postulate 2, p. 19) and pharmacological factors in SET (Meck, 1996) are
hypothesized to have important effects on the pacemaker’s rate.

Whether neural systems can easily implement the digital counters and registers
used by the creators of TPA and SET to describe implementations of their models is
an open question. Clearly, the researchers who have proposed many recent, non-PA
models in the neuroscience literature appear to feel that there is something im-
plausible about the PA approach, as classically embodied in TPA or SET. This view
may not be justified, given neural evidence adduced for both models: e.g., Treisman
(1984), Treisman et al. (1990), and Treisman et al. (1992) for TPA; and, e.g., Gibbon et
al. (1997), Meck (1996), and Meck (2006) for SET. We argue, however, that the neu-
ral implausibility charge carries even less weight against adaptive-pacemaker PA
models. We therefore review the principles of these adaptive-pacemaker models,
to make the case that the PA family currently provides the best account of timing
behavior and its possible neural basis.

The particular form of the DDM developed below gives a simple analytical ex-
planation of timescale invariance. It also accounts for one-trial learning of dura-
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tions, and it parsimoniously reuses the DDM — a leading model of non-temporal,
perceptual decision making (Smith & Ratcliff, 2004) — for the purpose of timing.
Perhaps most importantly, it makes new predictions about the shape of response
time distributions that are well supported. We now review the origins of this model
historically and mathematically in terms of an opponent Poisson accumulation
process, and we describe how it might overcome the major objections to count-
ing models listed above.

1.3. A Brief History of the Drift–Difffusion Model

Diffusion models originated in the work of Einstein on the atomic/molecular ba-
sis of Brownian motion (Einstein, 1905), which is typified by the restless jiggling
of a pollen grain in water as seen through a microscope (see Gardiner, 2004, for
an excellent historical review). The distribution of first-passage times for diffusion
models was later derived by physicists (Schrödinger, 1915; Smoluchowsky, 1915).
These are the times when a particle under Brownian motion first exceeds some pre-
defined distance from its starting point. These results were later generalized in the
Fokker–Planck formalism widely used today, in which partial differential equations
describe the time-evolution of probability distributions. Mathematicians (notably
including Norbert Wiener, after whom Brownian motions are frequently termed
Wiener processes) established their analytical bases as random processes, prov-
ing important theorems about their properties that underpin our explanation of
timescale invariance.

Diffusion processes were given their most elegant representations as stochastic
differential equations with the development of generalized rules for stochastic in-
tegration (in particular, the Ito calculus). Stochastic integration is the traditional
operation of integration computed with respect to time and, simultaneously, with
respect to a variable representing idealized Brownian motion (Gardiner, 2004). Be-
cause it bears directly on our narrative about accumulator models, we highlight the
fact that the continuous mathematical formalism of diffusion — in which time
and space are considered infinitely divisible, and particles never jump from one
location to another without covering the intervening space — was motivated by
what is essentially a discontinuous counting or accumulation process: i.e., the cu-
mulative displacement of a particle by a sequence of collisions. The first Brownian
motion observed under a microscope was the result of a large number of discrete,
countable collisions of small water molecules with a larger grain of pollen, but it
presumably looked as if it was being continually pummeled. If a movie were made
of an idealized particle undergoing truly continuous Brownian motion (motion like
that shown in Fig. 1), then slowing the movie down and examining only a tiny, mag-
nified fragment of it would almost certainly reveal a trajectory with the same visual
properties as the overall random walk (a form of self-similarity made famous by
widely viewed computer animations that ‘zoom in’ on the Mandelbrot set). As-
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Figure 1. (A) Diffusion without any drift: Particle ensembles densities plotted against position at ten
successive time steps (left) and particle trajectories plotted against time for ten time units (right).
(B) Diffusion with drift, forcing these ensembles toward the right (top) end of the tube.

suming continuity, however physically implausible, has nonetheless turned out to
be a very useful idealization for analyzing high-rate accumulation processes.

We complete this brief historical account of diffusion by describing its im-
portation into psychology. In parallel to the developments noted above, statisti-
cian/economist Abraham Wald developed theories of random processes for their
application to decision problems (Wald, 1947). His work culminated in results such
as the optimality, under certain conditions, of the sequential probability ratio test
(SPRT). In the SPRT, the log-likelihood ratio of two competing hypotheses is com-
puted in real time as samples of evidence are obtained, until the ratio exceeds a
level that indicates a decision, positive or negative, can be made with some level
of expected accuracy. We will refer to such a criterion level as a decision threshold.
Wald showed that, in a very general sense, no other test was better than the SPRT for
a generic class of two-choice problems: no faster test would be as accurate, and no
more accurate test would be as fast (Wald & Wolfowitz, 1948). When the evidence
samples are sufficiently small and occur sufficiently frequently, the SPRT approxi-
mates a drift–diffusion process: continuity becomes an acceptable assumption; dif-
fusion occurs because subsequent samples of the evidence frequently do not equal
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each other; and drift toward the correct threshold happens, on average, whenever
samples of evidence favor the correct response. This approximation has practi-
cal importance because it is a source of great mathematical convenience. In the
‘one-choice’ timing context, in particular, assuming continuity yields a simple, two-
parameter expression for the distribution of response times and its moments —
the inverse Gaussian distribution — as discussed below. Thus, drift–diffusion pro-
cesses have a longstanding, historical connection to decision theory.

Stone (1960) imported the discrete-sample SPRT into the psychological litera-
ture as a model of human reaction times in two-choice decisions. He noted one
of its most psychologically plausible features, which is that it cannot help but pro-
duce a speed-accuracy tradeoff: A higher decision threshold leads to slower perfor-
mance but higher accuracy (because the odds increase that the correct threshold
will be crossed first, by the law of large numbers), whereas a lower threshold leads
to greater speed and more mistakes. Few other phenomena are more robustly ob-
served in human and non-human decision making than a tradeoff between speed
and accuracy.

A strong prediction of the SPRT model and its diffusion approximation is that
correct and error reaction times in two-choice tasks should be equal when the
starting point is equidistant from both thresholds. Because these predictions are
usually violated in behavioral data, the SPRT model was soon rejected by influential
scientists (e.g., Laming, 1968). Subsequently, Ratcliff showed that generalizations
of the DDM incorporating across-trial variability in the starting point of the diffu-
sion process and in the rate of the drift allows either faster or slower errors than
corrects (Ratcliff, 1985; Ratcliff & Rouder, 1998).

It is important to note that Ratcliff assumed no direct connection between his
generalized DDM and the SPRT or its assumptions. Human participants are mod-
eled as embodying drift–diffusion processes without some of the assumptions key
to SPRTs (e.g., that participants have good estimates of stimulus likelihoods). In
practical terms, Ratcliff and others showed that his generalized model had the ca-
pacity to fit an enormous range of human behavioral data, from memory retrieval
(Ratcliff, 1978) to letter identification (Ratcliff & Rouder, 2000) to simple percep-
tual discrimination (Ratcliff & Smith, 2010), with the typical finding that fitted drift
rates decrease as task difficulty increases. Diffusion models are now leading models
of perceptual decision processes, applying to neural data as well as behavior (Gold
& Shadlen, 2007; Ratcliff, Cherian, & Segraves, 2003); most of the alternatives to
diffusion models are arguably subtle rather than radical variations of them (e.g.,
the Linear Ballistic Accumulator of Brown and Heathcote, 2008, which is basically
the Ratcliff model, sans within-trial diffusion; or the Ornstein–Uhlenbeck model of
Usher & McClelland, 2001, in which a feedback term either dampens or enhances
drift away from the starting point). Nonetheless, DDMs have only recently been
adapted as formal models of timing (Rivest & Bengio, 2011; Simen et al., 2011b).
These adaptations were originally inspired, however, by classic PA models such as
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Treisman’s and Gibbon and Church’s. In fact, as shown below, the type of time-
adaptive DDM we propose closely approximates an extended form of Killeen and
Fetterman’s (1988) BeT model.

2. Formal Definition and Properties of the Drift–Diffusion Model (DDM)

We now define the DDM mathematically, describe a physical realization of it, and
review the standard method for simulating it on a computer. (The description of
the simulation technique is easier to understand than the equation of motion that
it simulates.) Table 1 gives a glossary of DDM parameters.

The DDM is most compactly defined by a single, stochastic differential equa-
tion, where dt refers to time, and dW denotes, loosely speaking, Gaussian white
noise added at every step of the simulation (a formalization of the Brownian molec-
ular impacts):

dx = A · dt + c · dW. (1)

Think of x as the position of a drop of food-color in a horizontal tube. Without
loss of generality, we can define horizontal positions x along the tube in reference
to its midpoint (position 0). Consider the right edge of the tube to be at position z,
and the left edge to be at position −z, so that the total tube length is 2z. The drift
rate A determines how rapidly the particle will move to the right on average (i.e.,
the current in the tube). The noise amplitude c specifies the level of noise or ran-
dom Brownian motion; it determines the expected distance traveled by the particle
per unit of time under random perturbations alone. When the water is hot, for ex-
ample, the momentum that the water molecules confer on the particle is likely to
be larger than for cold water. Hotter water thus causes the food-color to diffuse
more rapidly (c is larger).

We denote the horizontal position where the food-color is injected into the tube
as x0. In the context of using the model to time intervals, we are primarily inter-
ested in the response time (RT): that is, how long it takes for a pigment particle to
reach the right edge of the tube for the first time. In the more typical application of
the model — to decisions between two choices — there is an additional objective

Table 1.
Parameters of the DDM

Parameter symbol Parameter name

A Drift rate
c Noise coefficient
z Threshold
T0 Non-decision latency



170 P. Simen et al. / Timing & Time Perception 1 (2013) 159–188

Figure 2. The drift–diffusion model of two-choice decision making. The drift, A, determines how
rapidly particles rise upward on average; the noise level, c, determines how much random perturba-
tion of the particle occurs per unit time; the starting point is x0 ; the upper boundary z serves as a
criterion for one type of response in two-alternative decision making, while the lower boundary, −z,
serves as a criterion for the other. In the case of timing, z is assumed to be much larger relative to
the noise than in perceptual decision making, and −z is assumed to be at negative infinity, though
in practice, as long as it is more than 0.1z below the starting point, lower-boundary crossings are
extremely rare and can be ignored. T0 represents a non-decision latency for sensory encoding and
motor response that is added to the decision time of the diffusion model to yield a total response
time.

of determining the probabilities of one edge being reached before the other, which
yield the model’s choice probabilities. In the timing context, fitting real data re-
quires the drift A to be so strong relative to diffusion c and tube length 2z that the
left edge is almost never reached before the right edge. It is this assumption that
allows the use of the inverse Gaussian distribution, greatly simplifying the results
as compared to the more common two-choice application of the model. Figure 2
shows an example of such a trajectory over time as it is usually represented, with
time on the horizontal axis, and with the tube now oriented vertically (e.g., the
former left edge is rotated down, and the former right edge to the top).

The Euler–Maruyama method (Higham, 2001) is widely used for computer sim-
ulation of Equation (1) as a discrete-time random walk. It involves iteratively eval-
uating Equation (2) to obtain a new particle position, xnew, based on the previous
one, xold. It employs the standard normal random variable N(0,1) and time steps
of size �t :

xnew = xold + A · �t + c · √�t · N(0,1). (2)

The square root of the time step in the noise term must be included, because the
mean square deviation of the particle position distribution increases linearly with
time — a standard property of diffusive processes. If not included, then the random
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walk simulation, Equation (2), systematically deviates from Equation (1) (viz., dis-
tributions of particle positions will have the wrong variance). The noise parameter
c scales the standard deviation of pure Brownian motion whose variance is 1 after
1 unit of time (in general, the variance equals the amount of time elapsed — this
and other key properties were proved by Wiener; see, e.g., Gardiner, 2004).

This model can be adapted to time responses in several ways. We could fix the
drift A and time different durations T by setting the threshold z equal to AT , for
example. This approach would be analogous to SET’s IPI. Alternatively, we could fix
the threshold and adapt the drift rate to time different intervals (as in BeT; Killeen
& Fetterman, 1988). Finally, we could do both simultaneously. We will follow BeT
and develop the fixed-threshold/adaptive-drift approach, but before describing
why, it will help to review some properties of the DDM that are critical for its ac-
count of timescale invariance. First, see Fig. 3 for why the lower threshold at −z

Figure 3. (A) A simulation of a 1000 trials of a drift–diffusion process, in which a normal random
variable with mean 0.1 and std 1 is accumulated over 10 000 time steps, until a first-passage across
the threshold value of 500 occurs. No trajectories ever descended below −31.3, so whether or not
a lower boundary (reflecting or absorbing) is included at, say, −30 or less, the first-passage-time
histogram would look almost identical. (B) The exact same set of trajectories, magnified, starting
at position 0, with an upper threshold at 10 and a lower threshold at −10. The histogram of upper-
threshold crossing times is shown above; the histogram of lower-threshold crossing times is shown
below. Note that there are far fewer lower-threshold crossings, but that the histogram has the same
shape as the one above.
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can be ignored; when z and A are high relative to c, the lower boundary is almost
never touched (for parameters that yield plausible levels of timing precision, the
probability of crossing the lower threshold first is on the order of 10−22).

2.1. Timescale Invariance (or Lack Thereof ) for Varieties of the DDM

We first note that the DDM predicts non-normal distributions of response times.
With a single absorbing boundary — in psychological terms, a single decision
threshold — the DDM predicts an inverse Gaussian distribution (Luce, 1986). The
inverse Gaussian (also known as the Wald distribution) is typically defined in terms
of two parameters: μ = z/A and ·η ·= z2/c2. Its density, defining the likelihood of
first-passage at time t , is the following:

p(t,μ,η) =
√

η

2πt3
· exp

(−η(t − μ)2

2μ2t

)

.

The inverse Gaussian converges on a normal distribution as noise c decreases
in relation to drift rate A (see Fig. 4 for an example of this convergence). With two
thresholds, one above and one below the starting point, the response time distri-
bution has no closed-form expression and is expensive to compute, requiring the
evaluation of many terms in an infinite sum of sines (Feller, 1968; Tuerlinckx, 2004).
As previously noted, however, with a large, positive ratio of drift to noise, the lower
threshold can be ignored, as particle trajectories have almost 0 probability of cross-
ing the lower threshold before the upper threshold, and the distribution quickly
approximates the inverse Gaussian. Assuming only a single threshold is also more
parsimonious because there is only one response to be made in simple timing tasks.

Figure 4. Comparison of inverse Gaussian (solid), gamma (dashed), and normal (dotted) probability
densities with equivalent CVs. Densities with larger CVs (on the left) show greater deviation from
normality and larger positive skewness. These densities were computed with greater noise for shorter
durations.
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The DDM with constant noise (i.e., with c fixed and thus independent of A

and z) is not timescale invariant. In this case, the expected first-passage time T

is simply the ratio of distance-to-threshold divided by the drift rate: T = z/A. The
standard deviation of the first-passage times is σ = c

√
z√

A3
, as derived in Simen et al.

(2011b) from the more standard expression in terms of μ and η: σ 2 = μ3/η (e.g.,
Luce, 1986). The CV is therefore the following:

CVDDM = c
√

z√
A3

· A

z
= c√

Az
. (3)

If we hold threshold z fixed and vary drift A to time intervals, so that A = z/T ,
we can eliminate A to obtain

CVDDM = c
√

T

z
. (4)

In this case, with the threshold fixed, the CV grows as the square root of T ;
timescale invariance is violated, to the detriment of timing long intervals.

If we hold drift A fixed and vary threshold z to time intervals, then

CVDDM = c

A2T
= c

A
√

T
. (5)

In that case, with variable drift or pacemaker speed, the CV decreases as the square
root of T ; again, timescale invariance is violated, to the benefit of timing long in-
tervals. This version is similar to classic Poisson timing (Gibbon, 1992), in which
a fixed-rate Poisson process times different durations via different pulse counts,
producing CV = 1/

√
λT , where λ is the Poisson rate parameter.

The final possibility is to fix the threshold, adapt drift to time intervals, and allow
the noise term to vary with the drift (and therefore with T ). Reasons at both the
neural and the behavioral level favoring this approach are noted below along with
a formalization of this scheme in terms of two learning rules. Because the model is
a special case of a DDM formed by two competing Poisson processes (as discussed
in the next section), we refer to it as an opponent Poisson DDM ; and because it
is time-adaptive, using the learning rules defined in Rivest and Bengio (2011) and
Simen et al. (2011b) to adapt the drift (discussed next), we refer to the model as a
time-adaptive, opponent Poisson DDM (TOPDDM).

2.2. Timescale Invariance in the TOPDDM

First, we review how the TOPDDM yields timescale invariance, appealing to a prin-
ciple of optimal behavior (see Table 2 for a glossary of TOPDDM parameter sym-
bols). We then review how the model emerges from a set of simple assumptions
about neural activity. Mathematically, these assumptions extend the assumptions
underlying BeT, which can be considered a special case of the model we propose.
BeT’s physical interpretation differs from that of our model, but its mathematical
account of timescale invariance carries over mostly unchanged.
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Table 2.
Parameters of the TOPDDM

Symbol Parameter name

A Drift
z Threshold
γ Inhibition-to-excitation ratio
m Noise-to-drift proportionality constant
λ Pulse rate of the pacemaker
μ Inverse Gaussian mean parameter
η Inverse Gaussian shape parameter

Equation (3) implies that for any DDM, maximizing A and z (or minimizing c)
minimizes the CV. Increasing precision in this way would seem to be advanta-
geous for survival, up to biologically achievable speeds and criteria. We assume
that thresholds are always kept near their maximum value because this allows the
drift rate to decrease in order to time long intervals and to asymptotically approach
its minimum as durations grow very long. The alternative strategy, fixing drift and
adapting threshold, would lead to a linear approach of the threshold toward its
maximum as durations grow, causing all longer durations to be perceived equal
to the maximum time-able duration. There are limits on the durations we can
precisely time in a stopwatch-like manner, but such limits are manifest as failing
precision, not as a compression of all long counts toward some smaller, maximum
count. Evidence is seen in the large CVs that approach 1 for 500-s intervals in Fig. 3
of Gibbon et al. (1997), or that increase regularly at long times (e.g., Bizo et al.,
2006). The drift-adaptation strategy of variable A with z fixed near maximum per-
mits more graceful degradation with long durations. Furthermore, we are unaware
of evidence for an abrupt onset of under-estimates — stuck clocks — as durations
increase. Finally, it could be argued that the physical limits on threshold height
(e.g., maximum firing rates) are more constraining than physical lower bounds on
ramp-up speed on a multiple-second timescale.

For the DDM, Equation (3) and the assumption of a constant threshold together
imply that a constant CV is achieved when drift rate is proportional to the square
of noise rate. But why would we make this assumption? This cornerstone of the
DDM’s explanation of timescale invariance follows from four assumptions about
the kind of neural activity we take the DDM to represent:

1. The neurons used for timing emit action potentials (spikes) with exponentially
distributed inter-spike times with rate λ;



P. Simen et al. / Timing & Time Perception 1 (2013) 159–188 175

2. Spike-times are uncorrelated between different pacemaker units in a popu-
lation; pacemaker units are those in populations that fire at a constant rate
during an interval and send spikes to the accumulator;

3. A neural integrator/accumulator sums this pacemaker’s spikes;

4. Excitation and inhibition are balanced, such that any increase in excitatory
inputs to a neural accumulator is accompanied by a proportional increase in
inhibitory inputs.

Assumption 1 is an old one in psychology and neuroscience, and though its in-
terpretation is different, such Poisson counting is also central to BeT. In BeT, the
Poisson assumption applies to behavioral-state transitions (e.g., from grooming to
exploring) rather than action potentials. The response-time distribution for BeT is
a gamma distribution of first-passage times. BeT, like the DDM we propose, also
fixes the threshold and adapts the rate of its ‘spikes’ (behavioral-state transitions)
to time different intervals. As a Poisson process model, the mean and variance of
the ‘spike’ count at a given time T are both equal to the rate parameter, λ, times T .
To maintain constancy of CV, the rate parameter must be inversely proportional to
the duration being timed: λ = z/T . For the gamma distribution, the shape param-
eter z and scale parameter θ = 1/λ, yield a mean of zθ = T , and a variance of zθ2.
This implies a CV as follows:

CVBeT =
√

z

λ
· 1

T
=

√
z

z
= 1√

z
. (6)

As long as z is held constant, the CV is constant. In general, for a gamma-
distributed variable X ∼ �(z, θ), any multiple qX is distributed as �(z, qθ). Di-
viding X by T = zθ yields X/T ∼ �(z,1/z), which is invariant as T changes —
i.e., it is timescale invariant. This is why θ = 1/λ is called the scale parameter. The
shape parameter z gets its name because as it grows large, the resulting distribution
changes shape — it takes on an almost normal shape with skew approaching 0; as
z decreases, the distribution becomes increasingly positively skewed (see Fig. 4).

BeT’s transitions between behavioral states cannot readily be re-interpreted as
neural processes. In order to achieve a CV of 0.1 — good performance for non-
human animals, typical performance for humans — z must equal 100. For a du-
ration of 100 s, this implies that the clock speed is 1 pulse per second — far too
low to be interpreted as an inter-spike time even for a single neuron, let alone a
population.

The TOPDDM, in contrast, approximates the running sum of an excitatory Pois-
son process and a concurrent inhibitory process. The rate of the latter is some
proportion γ of the excitatory process rate, and both process rates are adapted to
time different intervals (when γ = 0, the model is equivalent to BeT). The dis-
tribution of net spike counts for such a model is a Skellam distribution, which
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Figure 5. Comparison of trajectories and response time distributions for 500 simulated trials of an
opponent Poisson process (left panels) and the Euler–Maruyama simulation of the corresponding
DDM parameterization (right panels). CVs of the RT distributions (shown in titles of bottom panels)
are identical out to two decimal places; skewness is similar; and the ratio of skewness-to-CV (‘Ratio’),
predicted to be 3 on average for the DDM, is close to 3 in both cases.

quickly approximates a normal distribution after a few spikes, and thereby justi-
fies a drift–diffusion approximation, which assumes a normal distribution of noise
added at each ‘time step’ (as in Equation (2)). Figure 5 illustrates how closely the
DDM approximation matches its corresponding opponent Poisson process. The
expected value of this sum is simply the difference between the expected values
of each; these equal λt (excitatory) and γ λt (inhibitory). The variance of this sum
is the sum of the variances. Each variance, given the Poisson assumption, equals
the number of expected spikes at time t . Thus the variance of the spike count
is λT + γ λT . In the description of Equation (2), we noted that the variance of
the particle position distribution increases linearly with time T ; specifically, this
variance is c2T . Therefore, c must approximate (1 + γ )λ in the following drift–
diffusion approximation of the spike-count process:

dx = (1 − γ )λ · dt + √
(1 + γ )λ · dW. (7)

By defining m =
√

(1+γ )
1−γ

, and by defining A = (1 − γ )λ, we obtain

dx = A · dt + m
√

A · dW. (8)
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Figure 6. Simulations of the TopDDM for five different interval durations (2, 8, 32, 64, and 128 s).
Histogram bin widths increase as the durations increase. The CVs of these distributions are all ap-
proximately 0.1.

Thus, the simple assumptions of an opponent Poisson process outlined above
yield the right functional form for an account of timescale invariance. Figure 6
shows timescale-invariant simulations of the TOPDDM (with a CV near 0.1 in all
conditions).

The CV of the TOPDDM is:

CVTOPDDM = m√
z
. (9)

The assumption of proportional inhibition entails a free parameter m, rang-
ing between 1 (for γ = 0) and infinity (for γ = 1). This free parameter al-
lows CVs to take on arbitrarily large values even for large spike rates. Setting
z to a nominal maximum level minimizes CV for all interval durations, and
also produces a constant CV. As with the gamma distribution of BeT, fixing z

further predicts timescale invariance of the complete distribution. If X is in-
verse Gaussian-distributed (iG) with parameters μ and η, X ∼ iG(μ,η), then
qX ∼ iG(qμ,qη) = iG(qz/A,qz2/c2) (see Chhikara & Folks, 1989), which in
the opponent Poisson case is iG(qz/A,qz2/(m2A)). With q = 1/T = A/z, this
yields qX ∼ iG(1, z/m2). This parameterization is independent of T and is thus
timescale invariant.

It would seem best, if possible, for the animal to reduce the proportion of inhi-
bition γ toward 0, at least for the purposes of timing intervals, as that minimizes
the CV. It would drive the DDM toward BeT. But it would also require an implau-
sibly large value for the criterion, or clock rates much too slow to be considered
neural processes. In addition, reducing balancing inhibition to 0 could yield a host
of unpleasant consequences for the animal: too great a reduction of the inhibitory
neurotransmitter GABA in the brain, produces seizures as neurons begin to syn-
chronize their firing in a cascade (Telfeian & Connors, 1998). Thus, γ must be
nonzero.
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2.3. Skewness Predictions of Four Varieties of PA Model

Skewness statistics are usually ignored in the discussion of empirical timing
data — indeed, disregarding skewness has been explicitly recommended (Gibbon
& Church, 1990). Yet some positive skewness is typically observed in timing data,
and much larger positive skewness is usually observed in the decision making RT
distributions to which the DDM is usually applied (see Fig. 3). This greater skew-
ness may be due to slower rates of information gain (A), and in some cases to brief
lapses of attention (Killeen, 2013), but is simply explained as the result of much
lower threshold-to-noise and threshold-to-drift ratios in the two-choice context
(Fig. 3B) relative to the timing context (Fig. 3A). Giving a coherent account of RT
skewness is therefore important for a model like ours that seeks to unify timing and
decision making in terms of a common process. In general, skewness predictions
may serve to discriminate between different timing models that mimic each other
in other respects.

The TPA model makes no commitment to particular inter-pulse duration distri-
butions, and so is not constrained with respect to what it predicts about response
time distributions. This makes TPA very flexible, but possibly unfalsifiable so far as
skewness observations are concerned. SET is typically taken to predict Gaussian re-
sponse time distributions due to the memory comparison noise that swamps noise
in its accumulator. Still, that accumulator noise would tend to lend a slight amount
of skewness to the response time distributions. Again, though, the lack of a specific
prediction about skewness makes falsification difficult.

For BeT, the skewness of the gamma distribution is much more specific: it is
twice its CV (see Simen et al., 2011b, for a derivation). For the single-threshold DDM
with a high inhibitory spike rate, the skewness of the inverse Gaussian is three
times its CV. Of course, as the inhibitory spike-rate proportion of the opponent
Poisson model approaches zero, and the TOPDDM approaches BeT, the predicted
skewness must approach twice the CV. This fact demonstrates that the continu-
ous DDM approximation of the discrete accumulation process begins to yield a
small amount of systematic error as the inhibition proportion γ approaches 0.
Unpublished simulations that we have conducted show that the DDM is never-
theless a good approximation of the spike counting process even in such cases.
A close match between the simulated RT distributions when γ = 0, despite a 50%
increase in predicted skewness of the DDM (3) over BeT (2) for a given CV, sug-
gests that skewness statistics are likely to be noisy; large samples are needed to
estimate skewness accurately. This also suggests that skewness statistics based on
real data are likely to be very sensitive to contaminants, such as responses made
when attention is diverted away from the timing task. Nevertheless, both BeT and
the TOPDDM predict that skewness should be reliably greater than 0, and should
be proportional to CV across all durations.
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Despite the apparent sensitivity of the skewness statistic to noise, we have ob-
served in analyses of existing rat data provided by Church and colleagues (Church,
Lacourse, & Crystal, 1998) that the ratio of skewness to CV was significantly greater
than 0, between 2 and 3, usually closer to 3 than to 2 (as predicted; Simen et al.,
2011b). Skewness-to-CV ratio, then, may serve to discriminate timing models from
each other if CVs are not too small. In this respect, some non-human animal data
are currently better accounted for by the TOPDDM than by its competitors (Simen
et al., 2011b).

2.4. Adaptation Rules

The time adaptation of the time-adaptive DDM (TDDM) family of models, includ-
ing the TOPDDM, arises through simple learning rules that correct the timing er-
ror incurred after exposure to a new duration, within trial-to-trial sampling error
(Rivest & Bengio, 2011; Simen et al., 2011b). Some of the authors have examined ver-
sions of TOPDDM that make no reference to the opponent Poisson assumption,
and have therefore used the abbreviation TDDM in other publications (Luzardo,
Ludvig, & Rivest, 2013).

If the accumulation fails to reach threshold by the end of an interval, the follow-
ing late-timer correction rule increases the rate of accumulation:

�A = A · z − xend

xend
. (10)

The learning rule does this without depending on accurate knowledge of the du-
ration itself, but only on its current level at the end of the interval (xend) and the
drift A and threshold z.

To show that this rule works, consider the duration tn predicted on trial n after
one application of the late-timer learning rule on trial n − 1, in which the actual,
new duration is T :

tn = z

An

= z

An−1 + An−1 · ( z−xend
xend

)
= xend

An−1
= T . (11)

If the accumulation hits threshold early, an early-timer correction rule is needed to
decrease the rate of accumulation. One possibility for such a learning rule would be
if the diffusion process were to rise to some level above threshold z, then a rule com-
plementary to Equation (10) could tune the drift for more accurate performance.
This option, though simple to effect, conflicts however with the assumption that
organisms employ a near-maximal threshold.

Thus, we consider a learning rule that can correct the timing error without direct
reference to the actual duration T , and without the diffusion process exceeding z.
Equation (12) gives a differential equation for reducing A in real time in order to
learn the new, longer duration:

dA

dt
= −A2

z
with initial condition A(tearly) = z

tearly
. (12)
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Equation (12) should be integrated from the moment the diffusion process
reaches z, i.e., tearly, to the end of the duration T on trial n − 1.

This early-timer rule learns the accumulation rate that leads to T in a single
exposure, as we can see by moving the A2 to the left-hand side of the equation and
integrating both sides with respect to t :

[∫ A(T )

A(tearly)

−A−2 · dA =
∫ T

tearly

1

z
dt

]

⇒ z

A(T )
= T . (13)

Although these rules allow learning in one shot, a learning rate less than 1 can also
be implemented by rescaling the correction term (see Rivest & Bengio, 2011; Simen
et al., 2011b). The advantage of damping the process in such a way would be to
reduce the effect of sampling error on rate adjustments.

The TOPDDM can be summarized as consisting of Equations (8), (10), and (12).

3. Recent Successes and Remaining Challenges for the TDDMs

Since the publication of Rivest and Bengio (2011) and Simen et al. (2011b), new
capabilities have been modeled with time-adaptive DDMs.

3.1. Empirical Learning Rates

In addition to the core timing phenomena of timescale invariance and Weber’s
Law, the PA family of models has accounted for a number of other behavioral ob-
servations regarding the speed with which humans and other animals learn to time
(those applying learning rules Equations (10) and (12)). For example, Simen et al.
(2011b) showed that human participants learn to encode durations in a single trial
without covert verbal counting or tapping.

In addition, Rivest and Bengio (2011) showed that slight variations on this learn-
ing rule cause the model to learn either the arithmetic mean of the observed in-
tervals or the harmonic mean (i.e., the overall rate of the events being timed).
Estimating this event rate is of particular importance in modeling the speed of
learning in conditioning where a number of theories are predicated on that rate
with respect to each stimulus (Balsam, Drew, & Gallistel, 2010; Gallistel & Gibbon,
2000). Moreover, Rivest and Bengio (2011) showed that for any fixed learning rate
0 < α < 1, the drift rate is actually an exponentially weighted moving average of
the observed event rate (or of the time intervals, depending on the exact formula-
tion of the learning rule).

More recently, the TDDM family of models was shown to account for animal
behavior in situations in which intervals are continuously changing using cyclic
schedules (Luzardo et al., 2013). In this work, not only was it shown that TD-
MMs perform as well as, and sometimes even better than, the multiple time scales
(MTS) model (Staddon, Chelaru, & Higa, 2002; Staddon & Higa, 1999b), but it was
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also shown how the addition of a single constant parameter in the threshold pro-
vides an account for the lack of time-scale invariance present in dynamic-schedule
data sets. This addition does not preclude time-scale invariance because the basic
model is a special case of the more general model (when that extra constant is set
to 0).

3.2. The Peak Interval Task

There are several features of timing data that existing DDM-based accounts have
not yet addressed. One is the dynamics within trials of the TOPDDM in commonly
used tasks such as the peak-interval (PI) task (Catania, 1970; Roberts, 1981). Extend-
ing the model to account for this type of data is no more difficult for the TOPDDM
than it is for SET, for example, as we briefly demonstrate.

The DDM and related models are used in the perceptual decision making and
psychophysics literatures to model single responses to discrete stimuli. These mod-
els are not typically applied to the onset and offset of periods of high-rate respond-
ing (Church, Meck, & Gibbon, 1994). The necessary modification of the model to
account for these data is as simple in this case as it is for SET’s IPI. Although there
are multiple ways in which to do this, one simple approach is to use a single drift–
diffusion process and two different thresholds: a low threshold for starting a Pois-
son response process, and a higher threshold for stopping it. This model predicts
timescale invariance of the start and stop times across trials, as well as a variety of
other patterns involving spread of the high-rate response period and correlations
between these variables. Its performance is illustrated in Fig. 7, where a 10-s sched-
ule and a 30-s schedule are both performed.

This dual-threshold version of the TOPDDM predicts timescale-invariant in-
verse Gaussian distributions of the start times and stop times across trials. Fre-
quently, stop-time CVs are smaller than start-time CVs, as measured from the start
of the interval (Balci et al., 2009; Gallistel, King, & McDonald, 2004). TOPDDM
can account for this phenomenon, because the lower thresholds on the start-time
estimates imply a higher CV. When 1000 trials were simulated using the same pa-
rameters used to generate Fig. 7, the start time CVs were 0.127 and 0.126 for short
and long durations respectively, and stop time CVs were respectively 0.085 and
0.086.

4. General Discussion

Like many models developed during the heyday of early artificial intelligence and
the contemporaneous cognitive revolution in psychology, Treisman’s (1963) tim-
ing model was influenced by computer-design principles, and the experiments he
used to test the model were based exclusively on human behavior. Since then, the-
oretical behaviorists have applied models to the experimental analysis of behavior
in non-human animals (Staddon, 2001). This work has established the existence
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Figure 7. Peak interval performance under two different fixed interval schedules (10 s and 30 s). The
top panel shows 10-s responses as o’s; 30-s responses as x ’s. The middle panel shows the binned re-
sponse rates (solid = 10 s; dashed = 30 s). The bottom panel shows trajectories of the accumulation
process. 100 trials were simulated. CVs for start times of periods of high rates responding are 0.121 and
0.116 for short and long durations respectively; CVs for stop times are 0.090 and 0.085 respectively.
Thus start times are timescale invariant, stop times are scale invariant, but start times are more vari-
able than stop times.

of cross-species generalities manifesting themselves as laws of behavior, such as
timescale invariance. There appears to be little consensus, though, about what
these generalities are based on.

We have reviewed how a slight variation on an old idea in psychology and neu-
roscience — that Poisson spike rates linearly encode important quantities, as in
TOPDDM — can give rise to Weber’s law for time, and we have noted that it can
furthermore account for Weber’s law for any paired comparison of two stimulus in-
tensities (see Link, 1992, and a restatement of his argument in the Appendix). We
have also reviewed how a different assumption — that the pacemaker runs fast in
some trials and slow in others, as in TPA — yields a separate account of both forms
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of Weber’s law (Treisman, 1963, 1964). Finally, we have reviewed how SET explains
the timing version of Weber’s law by reducing it to Weber’s law for two-alternative
choice (Gibbon, 1992).

The TOPDDM in particular can account for Weber’s law for time, and at the
same time, it makes novel predictions regarding the shape of response time dis-
tributions. They should be inverse Gaussians — a prediction that seems in many
cases more consistent with empirical data than the typical normal distribution,
given the positive skew in so much timing data (Gibbon & Church, 1990; Guilhardi,
Yi, & Church, 2007).

The TPA model has great flexibility in terms of the shape of the response time
distributions it predicts. Our simulations suggest that as long as its key pacemaker-
variability assumption is made, both exponential and Gaussian distributions of
inter-pulse durations yield timescale invariance. However, the shape of the re-
sponse time distribution varies dramatically depending on the inter-pulse duration
distribution. It can thus account for the approximately Gaussian shapes predicted
by SET, as well as the inverse Gaussian shapes predicted by TOPDDM.

Taken together, these models as a class are likely to give as good a quantitative
account of behavioral timing data as any other model on the market.

4.1. Summary

Timing is just one piece of the puzzle confronted by psychologists and neuroscien-
tists. It is arguably such a critical piece, however, that establishing a strong theory
of timing represents major scientific progress.

Where are we in terms of reaching consensus on the mechanisms by which we
time our behavior? The Golden Age of any science arguably occurs when the feed-
back between theory creation and empirical testing reaches maximum velocity, fed
by attraction toward a stable, useful theory. It is hard to say whether we are at that
point, but the conversation between models and data is clearly more extended and
more sophisticated than ever before.

The PA family is unlikely to provide a final treatment of the brain’s milliseconds
to minutes-range timing mechanism(s). It does not address the other time scales in
which we live (though we feel the TOPDDM in particular is a strong contender for
some of those timescales). Even so, the increasing adoption by timing researchers
of mathematical tools such as stochastic differential equations is consistent with
the kind of theoretical and empirical acceleration that scientists seek. That kind of
acceleration was clearly triggered by Treisman’s adoption of computing concepts
to model the brain’s internal clock in 1963, though in recent decades, the TPA model
has not, in our view, received the attention it deserves. Today, the increasing use of
diffusion and other concepts in combination with TPA suggests that the Golden
Anniversary of Treisman (1963) may very much herald a Golden Age of timing re-
search.
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Appendix: The TOPDDM Account of Weber’s Law in the Nontemporal,
Two-Choice Case

In contrast to the manner in which Weber’s law is ‘built in’ to later versions of SET’s
IPI (Objection 2.1), Weber’s law emerges naturally in the case of two-choice per-
ceptual discriminations using the DDM. Link (1992) showed that the opponent
Poisson DDM of two-choice tasks gives Weber’s law for accuracy of responses, as
long as it is assumed that evidence for one choice is represented by a Poisson spike
process and that the spike rate is a linear representation of the strength of evidence.

Indeed, for this model, if correct responses are equivalent to first passages across
the upper threshold when drift is positive, and errors are first passages across the
lower threshold, then the generic DDM has the following, particularly simple ex-
pression for accuracy. This expression gives the average proportion of first passages
above the upper threshold when the starting point is equidistant between upper
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and lower thresholds, as would be expected when a participant is not biased to-
ward either response (see, e.g., Luce, 1986):

Accuracy = 1

1 + e2Az/c2 . (A1)

For an opponent Poisson DDM, 1/m2 substitutes for A/c2 in Equation (A1), yield-
ing:

Accuracy = 1

1 + e2z/m2 . (A2)

Note that this accuracy level is constant only across conditions in which the thresh-
old z is constant and the negative spike rate is a fixed proportion γ of the positive
spike rate — that is, across conditions in which the two stimulus intensities are
both multiplied by the same factor, whatever that factor may be. Accuracy should
thus be constant across precisely those conditions that do produce constant accu-
racy according to Weber’s law: i.e., when the two stimuli being compared are scaled
up or down by the same factor. Intuitively, this relationship holds because as the
spike rate increases in order to represent a greater stimulus intensity, the Poisson
noise it contributes to the decision process increases commensurately. Thus, We-
ber’s law in its original formulation emerges from the opponent Poisson assump-
tions, as it does in Treisman’s formulation from different assumptions (Treisman,
1963, 1964). There is no need in this case to assume a logarithmic representation
of subjective intensity, which Fechner derived from the scale invariance of just-
noticeable-differences.


