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Abstract
Researchers studying complex cognition have grown increasingly interested in mapping symbolic cognitive archi-
tectures onto subsymbolic brain models. Such a mapping seems essential for understanding cognition under all but
the most extreme viewpoints (namely, that cognition consists exclusively of digitally implemented rules; or instead,
involves no rules whatsoever). Making this mapping reduces to specifying an interface between symbolic and sub-
symbolic descriptions of brain activity. To that end, we propose parameterization techniques for building cognitive
models as programmable, structured, recurrent neural networks. Feedback strength in these models determines
whether their components implement classically subsymbolic neural network functions (e.g., pattern recognition),
or instead, logical rules and digital memory. These techniques support the implementation of limited production
systems. Though inherently sequential and symbolic, these neural production systems can exploit principles of
parallel, analog processing from decision-making models in psychology and neuroscience to explain the effects of
brain damage on problem solving behavior.
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1 Introduction

In order to build biologically plausible cognitive models that exhibit the full range of human
behavior — from playing chess to balancing on skates — it seems that researchers will
inevitably require models that can implement finite state automata (e.g., for representing
and executing sequences of chess moves), and at the same time, feedback controllers for
dynamical systems (e.g., for correcting a destabilizing wobble). Similarly, it will almost surely
require models that are robust to perceptual noise, but that can behave stochastically when
desired; and that require no central clock to govern synchronous, digital circuitry, but that
can still time intervals and represent symbols.
We present a technique for building cognitive models that may be able to satisfy the
disparate and seemingly paradoxical requirements outlined above. This technique draws
on the strengths of existing symbolic (or quasi-symbolic) cognitive architectures, such as
Soar (Laird et al., 1987) and ACT-R (Anderson and Lebiere, 1998) among others, but it
implements every feature in a physical-level design that differs substantially from the design
of standard computer hardware. It also draws on the strengths of existing subsymbolic
cognitive models, including models of associative memory and of decision making.
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Using this technique amounts to hardwiring neural networks to produce complex mod-
els of approximately symbolic processing. What is left out of this hardwiring approach,
of course, is one of the primary virtues of neural networks — the simple and powerful
learning algorithms that can be applied to them (e.g., Rumelhart et al., 1986; Ackley et al.,
1985; Williams and Zipser, 1989; Sutton and Barto, 1998). Our hope, however, is that in
showing how a hardwired system may resolve some of the differences between strictly
symbolic and strictly subsymbolic cognitive models, we will have presented a well-defined
target architecture that future learning algorithms may be designed to acquire through
experience.
To best achieve our purpose, and to show that an account of a symbolic / subsymbolic
interface can have practical consequences in cognitive modeling, this paper investigates the
functionality underlying human problem solving. Problem solving has been argued to exem-
plify complex cognition (Miller et al., 1960; Newell and Simon, 1972), but it is not typically
modeled with neural networks (although see Dehaene and Changeux, 1997). While what we
present is by no means a comprehensive theory of human problem solving, we hope that
it illustrates the leverage that can be gained from extracting symbolic processing out of a
subsymbolic system.
We begin from the same starting point assumed in some of the earliest cognitive modeling
efforts: namely, we model problem solving as a process of heuristic search (Newell and Simon,
1963). However, our approach differs from early symbolic modeling efforts in that it does
not presuppose any hard and fast distinction between software and hardware. Instead, it
directly addresses a lower level of description whose fundamental atoms we propose to be
standard, artificial neural network units. We choose this level of description despite the fact
that it, like a purely symbolic approach itself, sacrifices a great deal of biophysical detail.
We note at the outset, however, that there is growing evidence that this type of neural
network may plausibly be reduced even further to models whose greater level of physical
detail is more appropriate to single-cell physiology than to whole-brain function (Wang,
2002; Wong and Wang, 2006).
In what follows, we build from this model of the physical processing level up to an archi-
tecture capable of problem-space search, presenting possible solutions to problems that arise
along the way. Admittedly, this is an architecture with several limitations — including an
inability to implement first-order logic — that all appear to reduce to what is commonly
known as ‘‘the binding problem’’, and which further work must address. However, a variety
of promising approaches to this problem already exist that seem compatible with the pro-
posed architecture, including the binding of object features through temporal synchrony of
activations (Shastri and Ajjanagadde, 1993) — an approach which supports analogical rea-
soning in some systems (Hummel and Holyoak, 1997) — and, without relying on synchrony,
using layers of conjunctive processing units (O’Reilly and Busby, 2002) to bind features.
The general problem of using neural networks to represent first-order logic statements and
to carry out deductive inference has also been addressed by a number of approaches, several
of which are detailed in Hammer and Hitzler (2007).
The organization of the paper parallels both the design-level hierarchy of modern com-
puter engineering (Hayes, 1993) and the levels-of-analysis hierarchy made famous by David
Marr in vision research (Marr, 1982). Section 2 covers the basic ‘physical-level’ (Hayes,
1993) or ‘implementational-level’ (Marr, 1982) building block that we will use for cogni-
tive modeling — a stochastic version of a classic artificial neural network unit. Section 3
covers the decision making networks that form the basic components of the architecture’s
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‘logic level’, in engineering terms. Sections 4 and 5 cover the composition of these net-
works into sequential processing systems equivalent to simple production systems (collec-
tions of if-then rules coupled with a working memory). Because of their computational
power and psychological plausibility, production systems are used widely in symbolic cog-
nitive modeling (e.g. Anderson and Lebiere, 1998; Just and Carpenter, 1992; Laird et al.,
1987; Kieras and Meyer, 1997).
In order to demonstrate the usefulness of a well-specified symbolic/subsymbolic interface
for cognitive modeling, section 6 reviews published results from a model that incorporates
this interface. We applied it to human performance data from a problem solving task used
in psychology to assess cognitive deficits in brain damage and disease (the Tower of London
task of Shallice, 1982). These sections correspond to the ‘architecture level’ in engineering
and span the implementational and ‘algorithmic’ levels in Marr (1982); they provide most
of the essential pieces of a cognitive architecture — that is, a framework of core assumptions
that defines a space of possible cognitive models (Newell, 1990).
We conclude with a general discussion in section 7. In the supplementary materials, we
give a specification of the previously mentioned cognitive model of human performance in
the Tower of London task (the details of which have not been published and may interest
modelers seeking to replicate or generalize our modeling results). This example serves as
an existence proof that recurrent neural networks may serve as a bridge between low-level,
biophysically detailed neuron models and high-level psychological models.

2 Basic building block

In this section, we define a stochastic version of a classical model of neural population activ-
ity that has received empirical support from neurophysiology (e.g., Shadlen and Newsome,
1998). This population model will serve as the basic building block of a proposed cognitive
architecture. In its deterministic form (cf. Cohen and Grossberg, 1983; Hertz et al., 1991;
Hopfield, 1984; Lapique, 1907; Wilson and Cowan, 1972), this simple model feeds a linear
combination of a unit’s inputs into a system defined by one of the simplest possible nonlinear
differential equations. It is formally equivalent to an electric circuit of resistive inputs feeding
into a capacitor, or leaky integrator, whose output is boosted by an operational amplifier
(Mead, 1989).
Computing linear combinations or weighted sums of inputs allows a model neural popu-
lation to perform arbitrary linear transformations of its inputs. This capability has proven
useful for modeling fundamental human learning and categorization capacities by a num-
ber of authors (e.g., Anderson et al., 1977; Rosenblatt, 1958). It will form the basis of our
subsymbolic approach to simple decision making in section 3 and to more complex decision
making in section 5, where we equate making a decision to voting for outcomes in an elec-
tion. Further, it is consistent with the basic phenomena in synaptic transmission between
neurons, which lend themselves well to a linear description if plasticity is not too great
(Dayan and Abbott, 2001). Importantly, a linear model for integrating multiple inputs also
has the advantage of allowing the large body of linear systems theory to aid in the formal
analysis of models. Subsequently transforming these linear combinations with a nonlinear
tranformation (namely a squashing function) then allows a tremendous increase in func-
tionality (such as the ability to represent any continuous function; see, e.g., Bishop, 2006)
without a complete loss of analytical tractability.
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In addition to the linear combination of momentary inputs, the model assumes the addi-
tion of Gaussian noise to these inputs, followed by leaky integration of these noise-corrupted
combinations from moment to moment prior to application of the nonlinear transformation.
Leaky integration is formally defined in appendix A., where we also discuss the stochastic
numerical integration technique used to simulate the proposed architecture on a computer.1

Similar behavior occurs in a resistor-capacitor (RC) circuit: when the input voltage to such
an RC circuit is abruptly changed, the output voltage approaches the new value at an expo-
nential rate determined by the value of the circuit’s time constant, which equals the inverse
of the resistance times the capacitance (Oppenheim and Willsky, 1996).
It is from this property that we derive two of the most important reasons to use this
stochastic model. One is functional, which is that the RC factor (equivalently, the time
constant) determines the model’s ability both to act as a low-pass filter — that is, to filter
out high-frequency noise — and to act as a short-term memory. Thermal noise occurs at
roughly equal power at all frequencies in electrical circuits (Gardiner, 2004), and is there-
fore referred to as ‘white’ noise. In contrast, most signals of interest will have an upper
frequency bound, leaving a high-frequency band filled entirely with noise. Thus, attenuating
high frequencies is probably critical for the survival of organisms that use electrical activity
to process information. At least a small amount of such attenuation is, in any case, prob-
ably unavoidable in any physically implemented system: the small capacitances in digital,
sequential circuits provide a small amount of noise reduction, for example.2 When applied
to Gaussian signals corrupted by Gaussian white noise, this approach to filtering is in fact
equivalent to the optimal Bayesian signal estimation procedure (Poor, 1994); when it is not
optimal, it can frequently still approximate such a procedure, and unlike a true Bayesian
approach, it requires no explicit priors and is computationally tractable under all circum-
stances. Furthermore, noise allows random behavior, which is essential in competitive games
(Von Neumann and Morgenstern, 1944).
The other major reason for using this model is empirical, since individual neurons them-
selves have a capacitive membrane with resistive conducting pores (Hodgkin and Huxley,
1945). Thus leaky integration is known to occur in the brain (albeit in the context of a
variety of more complex processes). Simple, leaky integrators can be related to more com-
plex models of neural activity (Gerstner, 2000; Wang, 2002; Wong and Wang, 2006) that
can in turn be related to the widely accepted model of Hodgkin and Huxley (1952), but the
simplicity of leaky integrator models allows analytical solutions that more complex models
lack.
As we discuss in the next section, however, the time constant of individual neurons is
much too small to provide the kind of noise filtering and slow memory decay that may be
required for typical cognitive tasks (instead, individual neurons appear to be optimized for
millisecond-level computation). Nevertheless, populations of neurons acting in concert may
be able to achieve time constants that are much larger than that of an individual neuron
(Wang, 2001). In addition, Seung et al. (2000) discuss a method that we review here for using

1For an intuitive example of leaky integration, consider a water-bucket with a hole in the bottom: when water
is poured in at a fast enough rate, the height of the water approaches a stable equilibrium; after the inflow is shut
off, the accumulated water drains out in such a way that its level approaches zero; and rapid changes in the input
signal (the inflow of water) translate into gradual changes in the height. Reading off the water height therefore
gives a smoothed version of the input signal in which high frequencies are attenuated.

2Unfortunately, increased noise reduction comes at the cost of slower operation, so that higher computer speeds
can be achieved by reducing capacitance and boosting power to more clearly distinguish noisy 1s from noisy 0s.
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recurrent, self-excitatory feedback within such a population to achieve an arbitrarily large
time constant, including an ‘infinite’ time constant that causes a self-exciting unit to act as a
perfect integrator of its inputs (see Eq. 20). This fact will allow us to design mechanisms that
time intervals and provide feedback control with desirable properties (namely, properties that
allow cognitive models to make decisions robustly). These mechanisms in turn will enable
the construction of models that carry out problem space search without the use of a central,
oscillating clock and a traditional, synchronous circuit design.
Obviously, electric circuit models also describe electrical activity in the type of hardware
underlying programmable computers. As a result, a single form of mathematics can be used
for our ultimate goal of linking psychological models to neurophysiological models, and also
for translating between the symbolic computational level and the physical level of transistors,
resistors and capacitors in modern computing technology.
Formally, a low-pass filter coupled with a nonlinear activation function forms a system
defined by a stochastic differential equation (SDE), Eq. 1, and a squashing function, Eq. 2:

τ ·dx = (−x+s)dt + c ·dW (1)

V (t) = f (x)= 1
1+exp(−λ·(x−β))

(2)

Here, V is taken to represent the average firing rate of a neural population; λ determines
the slope of the sigmoidal activation function f , and β represents the offset voltage, or
equivalently, the value of the input x such that f (x)=0.5. By arguments in Appendix B.,
however, we can use a single, much more manageable equation with approximately the same
behavior (cf. Cohen and Grossberg, 1983):

τ ·dV =(−V +f (I ))dt+c′ ·dW . (3)

Here I represents a weighted sum of inputs from other units: I =∑N
i wjVj . The variable c

′

represents the weighted sum of noise terms, which averages out to 0 in the limit of a large
number of uncorrelated noise terms.
Now we turn to compositions of these building blocks for carrying out an essential opera-
tion in both computer technology and human and animal behavior: namely, decision making.

3 Composition of decision making circuits

With basic computing elements in hand, we now describe an implementation of symbols and
logical rules. Symbols arise in our analog system through a quantization (Gray and Neuhoff,
1998) or categorization process. The particular categorization process we use is equivalent
to a well-supported model of decision making in psychology and neuroscience known as the
diffusion (or drift-diffusion) model (cf. Ratcliff, 1978), which itself is inspired by the physics
of Brownian motion (Gardiner, 2004). A ‘decision’ is the selection of a unique outcome from
among a finite or countably infinite set of discrete possibilities, although the inputs to such
a process are often continuous.
This quantization approach is also at the heart of basic decision-making operations in
digital electronics (and in symbolic cognitive modeling approaches like production sys-
tems). Decisions are the fundamental logic-level operations that allow a purely symbolic
(i.e., binary) description of the physical state of a circuit and a description of its dynamics
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FIG. 1. Voltage bands corresponding to 1 (voltages greater than 2), and 0 (voltages less
than 0.8). These ranges define the limits for acceptable inputs to a logic gate. Output voltage
criteria are stricter. Greater reliability is achieved when logic component manufacturers
adhere to this scheme, because one gate in a chain can effectively clean up extreme noise in
its inputs before propagating its output.

in terms of propositional logic, even though the physical laws governing its behavior are
defined by differential equations and continuously varying quantities. Applying logical oper-
ations to symbolic descriptions then allows engineers to design at the hierarchically higher
architecture level (and software engineers to program at a still higher level) using much
simpler Boolean algebra. We hypothesize that symbolic search processes arise in cognition
for similar reasons of increased efficiency.

3.1 A standard voltage binarization scheme
Although we will argue that analog computation should not be ignored in cognitive model-
ing, the way in which standard computers implement digital behavior in inherently analog
circuitry will nevertheless provide a paradigm for our own analog-to-digital (AD) conver-
sions when they occur. Given that continuous change in the output voltage is produced by
continuous change in the input voltage, all-or-none switching behavior in networks of tran-
sistors, resistors and capacitors is determined simply by choosing a convention for voltage
levels that correspond to ‘all’ (1) and to ‘none’ (0). This convention assigns a band of accept-
able voltage values for representing a 0 to small voltages, and a wider band of acceptable
voltage values for representing a 1 centered at a higher voltage (Hayes, 1993). The conven-
tions for transistor-transistor logic (TTL) circuits, which are used for a wide range of digital
electronic circuits, are shown in Fig. 1.
In a digital system, symbolic representation is achieved by the use of these bands. When
the output voltage of a transistor-based logic gate falls within one band, it will be virtually
guaranteed to produce an output in downstream components that also falls within one of
these bands. The width of these bands is set so that noise cannot erroneously flip a bit, except
in circumstances of very small probability (and error-checking schemes are built in to digital
circuits to further reduce this probability). Noise is an ever-present element of real, electronic
system operation due, among other reasons, to the heat generated by electric current flowing

 at P
rinceton U

niversity on S
eptem

ber 7, 2010
jigpal.oxfordjournals.org

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[15:43 2/8/2010 jzp046.tex] Paper Size: a4 paper Job: JIGPAL Page: 711 705–760

A symbolic/subsymbolic interface protocol for cognitive modeling 711

through resistive material. Dealing with this noise when we abandon a digital interpretation
of voltages is of major importance.
In a noisy environment, the task of detecting whether a signal is present can be non-trivial.
The same is true inside an electronic system that does not adhere at all times to a TTL
voltage scheme (i.e., one that combines analog and digital circuitry). When many signals are
possible, and evidence for each conflicts with evidence for the others, the task of deciding
on a signal’s identity is all the more difficult.
Fortunately, the study of signal detection and decision making that has taken place since
the 1940s — in engineering, statistics and psychology — has led to a clear understanding
of optimal performance in these tasks. It has also produced a rigorous analysis of various
algorithms for carrying them out. A great deal of behavioral research in psychology has
furthermore been devoted to examining these algorithms as models of human and animal
decision making. As we will show, all of this work provides a strong incentive for choosing
some variety of a random walk as our algorithm for signal detection and decision making.
More fortunately still, recent work in psychology and neuroscience provides us with a simple
mapping from these algorithms onto neural networks, our computational medium of choice
(Bogacz et al., 2006).
In this section we draw on this work to develop an attractor network mechanism for
resolving conflict between the possible outputs of a decision making element: this mech-
anism uses lateral inhibition to implement a process of competition between responses.
Lateral inhibition is an old idea in neuroscience (Hartline and Ratliff, 1957) and neural net-
works (McClelland and Rumelhart, 1981; Grossberg, 1980b), and underlies many associative
memory models based on attractor networks in psychology. We draw on this work to for-
malize our approach to the basic decision making operations of our system when ambiguous
inputs attempt to produce more than one output from an element.
It is at this point that analog numerical representation begins to impact the method
by which neural networks emulate finite state automata and production systems: unlike
standard computer hardware components, individual units in a decision making element
will now represent real numerical quantities of evidence using an analog code. Specifically,
this code relates activation levels monotonically to the likelihood ratio of the hypotheses (or
preferences) under consideration.
We now examine how theories of signal detection and decision making, particularly ran-
dom walk models, contribute to our story. We will then be ready to address the implemen-
tation of productions and the resolution of conflict.

3.2 Theories of signal detection and decision making in statistics,
psychology and biology

A great deal of psychological research has focused on the processes leading up to human
responses in simple decision making tasks. Signal detection — the subject of psychophysical
investigation since Weber in the early 1800s — involves a single response to stimuli of a
single category. Signal discrimination or choice reaction — also studied since the 1800s
using reaction time techniques developed by Donders — involves multiple stimulus classes
and responses (Green and Swets, 1966). In our analysis, decision making will be taken to
include these simple processes, as well as other, more complex processes leading to discrete
responses (for example, choosing a car to purchase; cf. Roe et al., 2001). Our purpose in
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FIG. 2. A: Two possible stimulus distributions; B: Four sample paths of a drift-diffusion pro-
cess; C: Long-tailed analytical RT density (solid curve) and simulated RT histogram (top),
correct RT histogram (middle), error RT histogram (bottom); D: Time courses of noise-
free, mutually inhibitory evidence accumulation units with sigmoid activation functions and
mutual inhibition of strength ξ; E: The sigmoid activation function; F: A smoothed sam-
ple path of mutually inhibitory accumulator activations in the (y1,y2)-phase space showing
rapid attraction to a line (the ‘decision plane’) followed by drift and diffusion in its neigh-
borhood. Reprinted from Simen, P., Cohen, J. D. and Holmes, P., Rapid decision threshold
modulation in a neural network, Neural Networks 19, pp. 1013–1026. Copyright (2006), with
permission from Elsevier.

this section, though, is to situate the building blocks of a neural cognitive architecture in
a framework that has recently connected neurobiological research on decision making to
behavioral reaction time research (Smith and Ratcliff, 2004). For that reason, we will focus
on the favored task in this domain: discrimination tasks involving two stimulus categories,
each associated with its own response.
In this domain, models that employ a technique known as sequential sampling have been
used to explain some widely observed features of response time (RT) and accuracy data
(Luce, 1986) — in particular, the specific shape of the long-tailed RT distributions that
typically occur in human reaction time experiments. In sequential sampling models, the
stimulus is assumed to consist of a stream of samples from one of two probability distribu-
tions (Fig. 2A illustrates an example of two Gaussian distributions). To determine which
distribution is actually generating the stimulus, the samples are accumulated over time. Evi-
dence in favor of one or the other hypothesis thus builds up until a response criterion — or
decision threshold — has been reached. Sequential sampling models explain speed-accuracy
tradeoffs in decision making performance in terms of shifts in the response threshold toward
or away from the starting point of the decision variable trajectory: closer thresholds produce
shorter RTs and higher error rates on average (Grice, 1972; Laming, 1968; Ratcliff, 1978;
Reddi and Carpenter, 2000).
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In accumulator versions of sequential sampling models, evidence accumulates indepen-
dently in a set of accumulators, one of which is assigned to each hypothesis. In random walk
versions, in contrast, each sample that increases the evidence for one hypothesis (i.e., the
likelihood of that hypothesis given the data) correspondingly reduces the evidence in favor
of the other. This is a form of competition that effectively reduces two decision variables to
one: this variable equals the difference in accumulated evidence for each hypothesis. (Fig. 2B
shows the trajectory of this variable plotted against time for four different decisions super-
imposed on each other. Fig. 2C shows the resulting response time distributions over many
decisions.)
The ratio of the likelihoods of the two hypotheses is the quantity that is implicitly used
to make the decision in most random walk models: when the likelihood ratio approaches 0,
the hypothesis corresponding to the denominator is almost certainly true; when the ratio
approaches infinity, the hypothesis corresponding to the numerator is almost certainly true.
Assuming independence of individual samples, the current likelihoods can be updated to
incorporate a new sample quite easily: the likelihood of the hypothesis given the single
sample is multiplied against the total likelihood of the hypothesis given all previous samples.
When the logarithm of the likelihood is taken, this multiplication becomes an addition.
Similarly, dividing one likelihood by the other becomes subtraction when the logarithm of
the ratio is taken. Steps in the random walk thus equal increments to the logarithm of the
likelihood ratio for one hypothesis over the other. This property makes such a model equiva-
lent to the sequential probability ratio test, or SPRT (Stone, 1960). This fact is encouraging
for the use of random walk models, since the SPRT is optimal in a statistically stationary
environment, in the sense that no other test can achieve higher expected accuracy in the
same expected time; conversely, no other test can reach a decision faster for a given level of
accuracy (Wald and Wolfowitz, 1948).
The drift-diffusion model (DDM) (Ratcliff, 1978) is a sequential sampling model in which
stimuli are sampled continuously rather than at discrete intervals, like the continuous-time
low-pass filter mechanism of Eq. 3 (we will soon review a proof that the DDM can in fact
be approximated by a suitably organized neural network). With human subjects, the DDM
has accounted for response time distributions and choice probabilities in a wide range of
two-alternative tasks (Ratcliff and Rouder, 1998; Smith and Ratcliff, 2004).
During decision making by the DDM, the difference between the means of the two possible
stimulus distributions (see Fig. 2A), imposes a constant drift of net evidence toward one
threshold, and the variance imposes a Brownian motion that may lead to errors. The DDM
is defined by the following stochastic differential equation (SDE):

dx=A dt+c dW , (4)

We examined similar equations when discussing analog computation in section 2. Here, the
equation is arguably simpler. A is the signal strength; when it is nonzero, it produces a
tendency for trajectories x(t) to move, or ‘drift’, in the direction of the signal. Brownian
motion produced by integrating a white noise process dW , causes diffusion of a substance
within a liquid — hence the term ‘diffusion’ in the name of the model. The factor c weights
the intensity of this diffusive component of x ’s motion.

3.2.1 Sequential sampling by leaky integrator networks
In monkeys performing oculomotor tasks, the continuously evolving firing rates of neu-
rons in the lateral intraparietal sulcus (area LIP) have been related to competing evidence
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accumulators that approximately implement a drift-diffusion process (Gold and Shadlen,
2001; Roitman and Shadlen, 2002; Shadlen and Newsome, 2001). Similar findings have been
reported for frontal structures responsible for controlling eye movements (Hanes and Schall,
1996). We now examine how a network of leaky integrator units can implement the DDM
in this way, thereby achieving nearly optimal decision making capabilities in addition to
nearly optimal signal estimation capabilities in a way that is consistent with evidence from
neuroscience.
Evidence accumulation can be approximated by a simple neural network with two leaky
integrators, each of which responds preferentially to one of the stimuli. Each integrator is also
subject to inhibition from the other integrator (see Fig. 2D), as proposed by
Usher and McClelland (2001) (cf. Bogacz et al., 2006; Gold and Shadlen, 2002; Grossberg,
1982). The evolving activation of each unit (indexed by i) is determined by an SDE, the
deterministic part of which is given by Eq. 5:

dyi/dt=−yi−ξyj+Ii . (5)

Eq. 5 is a version of the basic leaky integrator unit (Eq. 3) that is linearized for easier
analysis. In this equation, Ii is the input to unit i. It is usually assumed to be a step function
of time (corresponding to stimulus onset). The parameter ξ represents the inhibitory strength
of symmetric connections between the two decision units; −ξyj represents inhibition from
the other unit(s).
When noise is included, the pair of linearized units is governed by Eqs. 6-7:

dy1=(−y1−ξy2+I1)dt+c ·dW1, (6)
dy2=(−y2−ξy1+I2)dt+c ·dW2, (7)

Assuming linearity also allows us to make the relationship between the DDM and its
neural network implementation explicit. By adding the two, noise-free, linearized equations
(Eqs. 6-7), we get a quantity, yc=y1(t)+y2(t), that approaches an attracting line — defined
in the (y1,y2) plane by y1+y2=(I1+I2)/(1+ξ) — exponentially at rate 1+ξ. Subtracting the
second equation from the first yields an Ornstein-Uhlenbeck process for the net accumulated
evidence, x=y1−y2:

dx=[(ξ−1)x+I1−I2]dt+cdW . (8)

We will refer to the attracting line as the ‘decision line’ (following Bogacz et al., 2006).
The difference quantity, y1−y2, represents movement along this plane in one of two possible
directions. By using strongly self-exciting units to implement thresholds on the activation
values, y1 and y2, decisions can be read out of this system. These thresholds define lines
in the phase space of unit activations that intersect the decision plane (the dashed lines in
Fig. 2F). These intersections are equivalent to decision thresholds applied to a process of
drift and diffusion along the decision line.
If leakage and inhibition are balanced (ξ=1), the drift term is a constant, A, and the

system is equivalent to the DDM (Eq. 4) with A=I1−I2 representing the difference in
inputs (Brown et al., 2005; Holmes et al., 2005).
Fig. 2F shows the evolution of the activations y1(t) and y2(t) over time. After stimulus
onset, the system state (y1,y2) approaches the decision plane. Projection of the state (y1,y2)
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FIG. 3. The phase portrait of a nonlinear two-unit system in which the decision plane is a
good approximation of where decision making takes place. The red (online)/upper (print)
curve illustrates the isocline of zero vertical velocity, and the black/lower curve represents
the isocline of zero horizontal velocity. Thus, their intersection is a stable attractor. Here
unit 1 is given a net input of 1.2, and unit 2 is given a net input of 1.6.

onto this line yields the net accumulated evidence x(t), which approximates the DDM as
shown in Fig. 2B. Fig. 3 shows that including nonlinear activation functions does not dra-
matically change the decision making dynamics.
We have now addressed the evidence accumulation aspect of two-alternative decision mak-
ing, but we have not addressed how a surplus of evidence in favor of one hypothesis is ‘read
out’ into a decision. We must address this issue because of a conceptual problem: if a sur-
plus of size x is sufficient for making a decision that in many cases leads to a motor action,
then why is x−ε not sufficient, for any ε>0? How can an arbitrarily small change in the
surplus make the difference between taking an action and remaining still? We can address
this problem easily by adding a second layer of strongly self-exciting units that implement
step functions (approximately). We discuss this solution in detail in section 4.
Thus, extremely simple leaky integrator units that provide nearly optimal signal esti-
mation can also perform nearly optimal decision making in the context of difficult, two-
alternative tasks.

3.3 Attractor and winner-take-all networks in higher dimensions
We have shown a simple example of an attractor network for the case of two-alternative
decisions. The pair of threshold detector units used to detect threshold crossings in the
accumulator/leaky integrator layer has four attractors in the state space of activations:
both units near 0; one near 0 and the other near 1; and both near 1. Assuming normal
operating conditions for a properly parameterized two-alternative decision making circuit,
and assuming one of the two signals is present, the expected behavior is that ultimately, one
of the two units will achieve an activation near 1, and the other will remain at an activation
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near 0. Thus, the system of two threshold units acts as a winner-take-all (WTA) network.
This scheme can be generalized to n units and constitutes a 2-layer building block for a
cognitive architecture that is analogous to the logic gates in computers.
We can also collapse the accumulator layer and the threshold layer of units into a single
layer of self-exciting units, as in the model of Wong and Wang (2006). Analysis of the rela-
tionship between the SPRT and such models is not as well developed as for the two layer
network, but such networks exhibit similar dynamics and may allow a simpler, one-layer
building block.
Here we generalize this two-channel WTA network to n channels. Technically, depending

on the interconnections among units, such a network could have an arbitrarily large number
of attractors in the state space of possible activations of all units (Amit et al., 1985). How-
ever, we are only interested in attractors that we can easily use to do computation. Thus
we will primarily investigate networks whose attractors under normal conditions consist of
exactly n+1 patterns of activation: one in which all units are near 0 activation, and for each
of the n channels, one pattern in which the given channel’s threshold unit is near 1 while all
the others are near 0 (i.e., a localist representation).
We can generalize beyond two dimensions by considering first three dimensions, defined
by Eqs. 9:

dy1/dt = −y1−ξy2−ξy3+I1,
dy2/dt = −y2−ξy1−ξy3+I2,
dy3/dt = −y3−ξy2−ξy1+I3. (9)

A general, n-dimensional version of Eqs. 9 is a non-homogeneous linear system that can
be transformed into a system with 2 unique eigenvalues (of multiplicities 1 and n−1) and
n orthogonal eigenvectors (McMillen and Holmes, 2006). The eigenvalue of multiplicity 1
corresponds to the eigenvector 1√

n

∑
yi , which defines the position of a decision plane —

an n−1-dimensional generalization of the 1-dimensional decision line in the two-alternative
case. The remaining eigenvalues correspond to orthogonal directions within the decision
plane that push the system toward a threshold on the plane.
Returning to the three-dimensional situation, let B=y1+y2+y3. Then Eqs. 9 imply Eq. 10:

dB/dt = −B+ξ(−2y2−2y3−2y1)+I1+I2+I3
= −(1+2ξ)(y1+y2+y3)+I1+I2+I3. (10)

Setting dB/dt to 0 gives the following relationship between the three activation variables:

y1+y2+y3= I1+I2+I31+2ξ . (11)

This defines a 2-dimensional decision plane that, like the 1-dimensional decision line in the
two-alternative case, cuts diagonally through the activation bounding box. This intersection
forms a triangular area (see the triangular surface in Fig. 22) within which drift and diffu-
sion take place (McMillen and Holmes, 2006). The boundaries of the triangle are absorbing,
meaning that as soon as the system hits one of them, the process stops. Thus they act
as response thresholds in a decision making context. (The decision plane can also form a
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hexagonal bounding area with three absorbing and three reflecting boundaries, depending
on the precise decision plane placement. Reflecting boundaries prevent the system from
going beyond them, but do not stop the evolution of the process; thus the system can hit a
reflecting boundary and then move back away from it over time.)
In general, we can continue this pattern for n alternatives to get a decision plane defined
by Eq. 12:

n∑
i=1
yi=

∑n
i=1Ii

1+(n−1)ξ . (12)

We can always generate a winner by exciting one unit more strongly than all others by
some margin. The problem is that we can also easily produce either no winner, or multiple
winners, by carelessly defining input strengths and the connection strengths from the accu-
mulator layer to the threshold layer. These problems are addressed in appendix C., where
nonlinear, integral feedback control is used to ensure the WTA property of our decision
making networks.
We now address the means by which connections and connection strengths can be pro-
grammed to implement competing if-then rules, or productions, of varying degrees of pref-
erence, as well as the state-maintenance and sequential state transitions that define a finite
state automaton (FSA).

4 Sequential processing

We have discussed how a simple, low-pass filtering mechanism can be applied to the problems
of signal estimation and decision making. We now address how a network of these mech-
anisms can emulate a memory-limited Turing machine, or equivalently, an FSA (Sipser,
1997). For our cognitive modeling goal, the FSA must itself implement a production system
that in turn must implement a problem-space search algorithm. And given our commitment
to biologically plausibility, our system must do all this without relying on a centralized
system clock governing a sequential, synchronous processing architecture, as standard com-
puters do. Nevertheless, we need a standard computer’s capability for sequential process-
ing, because when humans solve problems — and more generally, when they carry out the
type of symbolic processing exemplified by problem solving — they frequently appear to
mentally simulate a sequence of state-to-state transitions in a space of possible task states
(Miller et al., 1960; Newell and Simon, 1972). Indeed, it is this fact — especially in the case
of mathematical proofs and computations — that inspired the Church-Turing Thesis, which
states that computation in any form is essentially equivalent to the operation of an FSA
controlling a memory tape (Sipser, 1997).
The primary external signal given to the type of problem-solving models we envision
within the proposed architecture (we discuss one such model in detail in the supplementary
materials) will be an initial problem space configuration and a goal configuration. At that
point, the model will need to move through the problem space at its own pace, and various
parallel processing pathways will need to coordinate the timing of their processing. Thus the
FSAs we need to emulate have states in which the next state is determined without reference
to any signal from the environment. The components of such an FSA will need to time their
own operations, determining how long to remain in a given state before transitioning without
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FIG. 4. A two-layer decision network, in which the first layer of non-self-exciting, approxi-
mately linear units weighs evidence represented by an analog code, and the second layer of
strongly self-exciting, highly nonlinear units reads out the decision into an approximately
binary code. Here, arrows represent excitatory connections, and circular arrowheads repre-
sent inhibitory connections.

using a centralized, oscillating clock as a trigger. In our case, we would like to know how
to make the system operate as quickly as possible, moving through the problem space at
maximum speed, while maintaining some specified level of accuracy in its transitions. This
section covers the state-maintenance and self-timing mechanisms that our system will require
in order to do this.
In another contrast to standard sequential circuit designs, these circuits will also involve
concurrent operations which frequently conflict with each other (as in the competitive
dynamics of the circuit in Fig. 4). In particular, a key operation of the system will be to select
an action to take in a given problem solving task, and the production system emulated by
the network will frequently match multiple, mutually exclusive rules specifying which action
should be selected. Thus, the system must carry out a process that is equivalent to decision
making among more and less preferred alternatives. Finally, the system will also frequently
need to decide among alternatives that are all equally preferred. This fact requires that our
system emulate a probabilistic FSA: an FSA in which the probabilities of particular state
transitions, rather than the transitions themselves, are what are determined by the current
state and current input.

4.1 Mapping finite automata onto neural networks via symbolic
dynamics: symbols = state-space regions

The first complete analysis of the computational capabilities of finite state automata —
showing specifically that every FSA essentially computes whether an input string of sym-
bols matches some regular expression — was given by Kleene in the context of a model of
neural processing (Kleene, 1956). It would therefore seem that we do not have to do any
work in order to construct a mapping between FSAs and neural networks. However, Kleene’s
construction involved discrete time and the use of noiseless, McCulloch-Pitts neurons: units
which compute a weighted sum of inputs and then apply a step function to the sum, pro-
ducing an instantaneously responsive, binary output. (In contrast, our leaky integrator units
compute a weighted sum of inputs and then asymptotically approach the value defined by
a sigmoidal function of that weighted sum.) Given the constraints that we derived in the
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FIG. 5. Four potential wells, implementing four symbols in the (x,y) state space of two units’
activations.

previous section, however, it is not yet clear that a neural network of the type that interests
us (i.e., one that operates in continuous time and is analog, asynchronous and noisy) can
implement finite automata and carry out problem-space search. In this section, we outline a
mapping from finite automata onto neural networks that meets our constraints. In the sec-
tions that follow, we will fill in the details about the critical mechanisms that are sketched
here.
We can think of the state of a two-dimensional analog system as the x and y coordinates

of a ball rolling around on an energy surface (a function z= f (x,y)). If noise is present, the
ball will also be constantly jostled by random perturbations. The ball will tend to come to
rest in any valleys, or wells, in the surface (e.g., see Fig. 5).3 In order to implement an FSA
in an analog system, we need to create a mapping between non-overlapping regions of the
underlying analog system’s state space (the analog states, defined by coordinates x and y
in Fig. 5) and the states of the FSA (the FSA states). These analog-state regions must not
overlap, so that the mapping from FSA states onto regions is one-to-one and the system will
never be confused about what state it is in.
As a reminder, the analog state space (or phase space) of the system we will examine

consists of vectors of real numbers, each greater than or equal to 0 and less than or equal
to 1. When we are faced with more than two phase space dimensions (i.e., more than two
units), the energy surface is difficult to depict graphically. Nevertheless, the analog state is
equivalent to a point moving inside a hypercube (i.e., a ‘brain state in a box’, in the colorful
description of Anderson et al., 1977). Each dimension corresponds to one unit in the system,
and an energy surface can still be well-defined.
Since we assume the presence of noise, the non-overlapping regions of state space must be
separated by a no-man’s-land that is not associated with any state. Otherwise, a stochastic
process involving white noise perturbations that is leaving one region and entering another
is likely to make multiple, back-and-forth crossings of a region-boundary during a single

3Importantly, given that our model consists of first-order differential equations, the energy surface determines
the velocity of the ball, rather than its acceleration, as in the case of a real ball.
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intended FSA transition. A separated analog state region is consistent with the TTL voltage
band convention. Fig. 5 shows regions in the x−y plane that denote four distinct symbols,
separated by large regions that do not encode any particular state of an emulated four-state
FSA.

4.2 Threshold mechanisms
Since the behavior of an emulated FSA will be conditioned on the entry of an analog state
into a symbol region, threshold-crossing detection will be an essential function of our system
(as it is in any computer). Mathematically, it is easy to define a quantity (an indicator
variable) that specifies whether the analog state of a system is within a symbol region, such
as the TTL regions for 0 and 1 in digital systems. An indicator variable for a single voltage
takes on the value 1 when a voltage is inside a region, and 0 when it is outside, making it a
step function — or Heaviside function — of the analog state variable.

4.2.1 McCulloch-Pitts neurons
In general, approximations to step functions will play critical roles in our models in deter-
mining whether or not to make a response. However, using step functions per se would
present serious difficulties for the type of model that we address in section 6. Ultimately,
we will derive instead a simple mechanism for approximating a step function with arbitrary
precision using only the leaky integrator units we presented in section 2. First, though, we
state the definition of McCulloch-Pitts neurons (McCulloch and Pitts, 1943) explicitly in
Eq. 14, and we analyze the problems this model presents, especially when the discrete time
steps (n) are generalized to continuous time (t).
Formally, the activation Vi of the ith unit in a system of McCulloch-Pitts neurons in
response to input Ii is as follows:

Ii(n) =
∑
i

wijVj(n) (13)

Vi(n+1) =
{
1 if Ii(n)>� (�= threshold)
0 if Ii(n)≤�

(14)

Eq. 14 is very similar to Eq. 3 in that it computes a weighted sum of its inputs. The
effective threshold can be increased or decreased from � by providing a constant input (or
bias) to the unit. A positive bias in effect shifts the function to the left (decreasing the
threshold), and a negative bias shifts it to the right (increasing the threshold). A simple
but effective technique for adapting response thresholds (and speed-accuracy tradeoffs) to
changing task conditions derives from this fact (Simen et al., 2006).
However, there are critical problems with this idealized approach to thresholds regarding
its physical and biological plausibility. Furthermore, a disastrous, noise-induced ‘chatter’
effect is easily produced by artificial mechanisms that approximate these idealized thresh-
olds. Without compensating mechanisms, thermostats that use temperature readings to
govern a furnace, for example, can rapidly switch a burner on and off as a room’s tempera-
ture hovers noisily around the thermostat’s temperature threshold, thereby wasting energy
and possibly damaging the furnace.
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For our purposes, the worst problem with McCulloch-Pitts units is that, by themselves,
they cannot maintain an encoded FSA state in the interim between received state-transition
signals. Therefore, we either need to guarantee that the intervals between input signals to
the FSA are shorter than the decay time of our state-maintaining units (an unnecessarily
strong constraint), or we need to ensure that state can be encoded indefinitely (or latched)
as is done in digital electronics. Latching is the path we will take.
We achieve latching and avoid the chatter problem with the use of strong, recurrent self-
excitation in ‘readout’ units, like those in the second layer of Fig. 4. This results in bistable
dynamical systems with exactly two equilibrium points that produce all-or-none behavior of
the desired type. Bistability will play an important role in our proposed architecture, as it
does in other neural modeling approaches and in digital electronic circuit components (Hayes,
1993). Bistable striatal neurons in mammals, for example, are thought to produce action ini-
tiation by promoting signal propagation through the basal ganglia (Alexander et al., 1986).
Because of its role in action initiation and sequencing (Aldridge and Berridge, 1998), the
most recent version of ACT-R has associated production firing with the basal ganglia in
its mapping from the architecture onto the brain (Anderson et al., 2004). We proposed a
similar mapping in Simen et al. (2004).
Thus recurrent excitation defines the symbolic/subsymbolic interface in our approach to
cognitive modeling, by turning a nearly linear system into a highly nonlinear (nearly binary)
one.

4.2.2 Hysteresis
In general, bistability and latching are properties of many systems that display hysteresis:
that is, systems whose outputs do not depend exclusively on their immediate inputs, but also
on the recent history of the system’s outputs. Fig. 6 shows a classic example of a bistable
system with hysteresis. The vertical axis represents output values, and the horizontal axis
represents input values. The solid curves denote stable equilibrium output values as two,
distinct functions of the input values. The dashed curve represents unstable outputs as a
function of inputs: for any coordinate pair that lies on this curve, any perturbation of the
output will cause it either to increase to the upper solid curve segment or to decrease to the
lower solid curve. The resulting dynamics of such a system are that upward velocities occur
as the input increases above point A if the output starts out on the lower solid curve (these
velocities become large as the input grows greater than A). Similarly, downward velocities
occur as the input decreases below B if the output starts out on the upper solid curve. For
any input I in the range between B and A, the system’s output value has either the lower
or upper solid curve as its equilibrium, depending on whether the previous output values
were, respectively, below or above the dashed curve.
Hysteresis has historically been employed for a variety of functions in psychological and
neural models, including short-term memory (Cragg and Temperley, 1955; Harth et al.,
1970; Nakahara and Doya, 1998), abrupt changes in conditioning and extinction
(Frey and Sears, 1978), and critically, the implementation of population thresholds for activ-
ity that are robust to noise (Wilson and Cowan, 1972). A simple method for controlling the
amount of hysteresis in the bistable units we propose for threshold-crossing detectors will
be the principal technique that allows us to construct models capable of complex, sequential
processing. Also, while we have noted that the vertical translations in the hysteresis dia-
gram in Fig. 6 can be rapid, circuits with cyclic connection patterns (as discussed below) will
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FIG. 6. A latch based on hysteresis. The solid curves denote stable, attracting points: for any
given, constant level of input, I , the system will eventually converge to a point on one of these
curves centered above I on the horizontal axis. Where a dashed curve is plotted, two possible
attractors exist for the same input value. Which curve the system converges to (assuming
I is held fixed) is determined by the current output value of the system: if it is above the
dashed curve, it will converge to the upper solid curve, otherwise to the lower curve. If
the system starts out on the solid curve in the lower left corner of the diagram, and input
increases, it will follow the trajectory denoted by the arrows. Input value A then defines a
threshold for inputs that drive the system to a high level of output activation (corresponding
to a binary 1). If inputs then drop below A, the system retains nearly maximal activation
until input drops below the value B, at which point output will plunge to the lower attractor
(a binary 0). It can store a 1 or a 0 as long as the input is between A and B, and will be
least susceptible to noise at the midpoint between them.

sometimes require in addition a method for controlling the speed of the vertical translations.
In fact, for inputs only slightly greater than A, the upward vertical velocity is very small for
solutions that are leaving the lower, stable equilibrium curve, so that input strengths can
be tuned to achieve arbitrarily slow translations in the absence of noise.
We now show how input latching and resetting can be achieved if we can assume that
our units display hysteresis. Rather than using an ‘enable’ line, as in typical electronic
latches, this latch operates more like a static RAM cell in computer memory: it loads a
new value when forced with a strong input that overwrites its currently stored value. Here,
‘strong’ inputs are those that are greater than A or less than B. As we show below, we can
parameterize our units so that input signals of strength near 0 occur at the midpoint of
the unstable (dashed) curve, as in Fig. 6. When strongly positive inputs greater than A are
received for a duration long enough to drive the output into the 1 region, the latch is ‘set’,
independently of the previously stored value. When strongly negative values (less than B)
are received for long enough to drive the output into the 0 region, the latch is ‘reset’, again
independently of the previously stored value. When inputs in the intermediate range are
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received, they change the output value slightly, but they are incapable of driving the output
out of the symbol region for the currently stored symbol.

4.2.3 Threshold-crossing detectors and latches built from self-exciting,
sigmoidal, low-pass filter units

Positive feedback in sigmoidal units is the key to generating the hysteresis properties that
we need for threshold-crossing detection and latching. We therefore consider the dynamics
of a self-exciting unit, whose output value V is weighted by a nonzero synaptic strength
w and added to the weighted sum of its other inputs. A standard result for such units is
that supplying them with positive feedback is mathematically equivalent to changing the
shape of their activation functions. We can achieve latching in this way, and we can also
achieve precise control over the speed of this latching. Control over this aspect of hysteresis
is what will allow us to connect units into network topologies containing small cycles, which
in turn will allow us to build concurrently operating, self-timing circuit components with
ease.
We can determine the effects of recurrent excitation by two methods: the first is the
hysteresis diagram that we have already discussed, which will allow us to interpret self-
excitation as a deformation of a unit’s activation function; the second method, based on
‘cobweb diagrams’ (Jordan and Smith, 1999), is covered in the supplementary materials.
The latter technique is extremely useful for model construction, allowing the designer of a
model to estimate the rate of change in activation at a given pair of input and output values
by visual inspection. This method in turn supports an efficient procedure for setting the
connection strengths between units in large networks so that desired behaviors are achieved.
However, the workings of architecture components can be understood without delving deeply
into the details of this technique.
Diagrams like those in Fig. 6 are sufficient for this purpose. These figures can be computed
by numerically finding the points in the input-output plane at which the derivative dV /dt
in Eq. 3 is equal to 0, using Newton’s method, for example. (The utility of cobweb diagrams
is that they do not require this computationally expensive step.) The activation derivative
can also be computed at a grid of points in the input-output plane, so that nonzero velocity
vectors can be plotted (with arrow-length proportional to magnitude) to give a global picture
of how the system changes as a function of position. The plots in Fig. 7 show this approach: a
system with self-excitation that perfectly balances its leak is plotted on the left (we will refer
to such units as balanced); a system with stronger self-excitation results in bistability and is
plotted on the right (we will refer to such units as strongly self-exciting); units with weaker
self-excitation (not shown) will be referred to as weakly self-exciting (a weakly self-exciting
unit’s activation function will look more like the non-self-exciting activation function shown
in Fig. 2E; weak self-exciters act as leaky integrators with an adjustable time constant that
increases as the recurrent weight increases, as in Eq. 20) in Appendix A.
A unit’s activation function can also be computed over a range of self-excitation strengths
and plotted as a surface. Fig. 8 illustrates this graphical approach. This type of diagram
is a depiction of a ‘cusp catastrophe’ (Thom, 1989), in which a particular type of sud-
den, ‘catastrophic’ change occurs in the shape of the equilibrium curve (which in our case
is an activation function) as some parameter of the system changes continuously (in this
case, the strength of self-excitation). The equilibrium curves in the bottom plots of Fig. 7
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FIG. 7. Phase plots for units with balanced (left) and strong (right) recurrent connections
to themselves. Here equilibrium curves are plotted as solid curves, and velocities are plotted
by arrows and shading (white corresponds to positive, black to negative velocities).
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FIG. 8. Effective activation functions for a range of self-excitatory, recurrent connection
strengths, plotted as a ‘catastrophe manifold’. This system produces a cusp catastrophe
as self-excitation increases above 1 (in general, such catastrophes occur when self-excitation
increases above λ/4, where λ is the maximum slope of the sigmoid activation function (i.e.,
the activation function for self-excitation equal to 0). Given a particular recurrent self-
excitation strength, w, a vertical slice through this surface parallel to the Input axis and
positioned at w on the Recurrent Strength axis gives the effective activation function for
that value of w.

are equivalent to vertical slices through this surface that run parallel to the Input axis.
The catastrophic change that occurs as recurrent weight strength increases is the sudden
appearance of three equilibrium points for certain input levels (and therefore hysteresis too),
whereas for smaller recurrent weights, there is only one equilibrium point (and no hysteresis).
The so-called ‘bifurcation’ value of self-excitation at which this change occurs happens to be
equal to the slope of the original sigmoid activation function at its inflection point, as shown
in the supplementary materials. At this special value (i.e., when it is balanced), the system
approximates a perfect (non-leaky) integrator. We discuss an interval timer in section 6 that
exploits these dynamics in order to time out unsuccessful steps of computation and generate
subgoals for problem solving.

 at P
rinceton U

niversity on S
eptem

ber 7, 2010
jigpal.oxfordjournals.org

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[15:43 2/8/2010 jzp046.tex] Paper Size: a4 paper Job: JIGPAL Page: 725 705–760

A symbolic/subsymbolic interface protocol for cognitive modeling 725

4.2.4 The closed-loop problem
The primary self-timing operation that independent, concurrent processes in our model will
invoke once activated is to prevent other processes from interfering with them until they
have finished their work (if possible). This includes preventing new inputs to a process from
being accepted once the process begins. It also includes waiting for indications that the
result of a process has been computed, and then cancelling itself. Both of these types of
handshake operation can be achieved with cyclic connection patterns involving excitation
and inhibition (Sparso and Furber, 2002).
Here we examine the simplest example of such a system, depicted in Fig. 9: two units,

IN and OUT, in which IN excites OUT, which in turn inhibits IN. Once IN is inactive
and OUT is active, we might want OUT to persist in its activity indefinitely, or to persist
until being inhibited by some other unit (not depicted), or finally to return to inactivity
after a delay of controllable duration. We now address parameterizations and a technique
for finding them that allow these behaviors to be realized.
Fig. 9 shows the activation levels of the two units over time, under three different param-
eterizations, in response to two step pulses of input of amplitude 1. The only parameter that
varies in the three sets of plots is the strength of the connections between IN and OUT. The
intended behavior of the system is to detect the first input pulse, thereafter propagating a
1 from OUT and making IN unreceptive to external inputs. Both units are parameterized
with bias β equal to 1.2, gain λ equal to 4, and recurrent excitatory connection strength 2.
Each subfigure of Fig. 9 shows the timecourse of activation in a two unit network receiving a
pulsed input. The top two graphs of each subfigure show the activation of the unit illustrated
next to the graph. Subfigure A and C both show failures to achieve the intended behavior
due to interconnection strengths that are too weak and too strong, respectively. Subfigure
B shows the intended behavior being executed.

4.3 Elementary logic functions
Using hysteresis diagrams, we now demonstrate that self-exciting, nonlinear leaky integrator
units can implement a complete set of logic functions (a set, like {AND, NOT}, that can be
used to compute any propositional logic function). We will then have the means to compute
the state-transition table for any FSA.
Consider a system of two upstream units, A and B, and one downstream unit C , with

feedforward excitation from A and B to C , as in Fig. 10. In order for C to respond as the
neural equivalent of an AND gate in digital logic, the following behavior is required: when
A and B are both highly active, C should be highly active. If either A or B are inactive, C
should be inactive. C should never linger at values that are far from 0 or far from 1.
The following parameterizations, illustrated in Fig. 10, give this behavior. C should be

strongly self-exciting, and θC should be greater than γ2, the bifurcation point at which two
stable equilibria and one unstable equilibrium collapse to a single stable equilibrium. The
connection strengths from A and B to C should sum to a value sufficient to exceed this
threshold when added to the baseline level of input to C (in Fig. 10, this level is a point φ to
the left of γ1). Thus when A and B are highly active, C ’s effective activation curve will have
a single equilibrium value near the maximum possible output value of 1. Without a drop in
A or B, C will eventually become highly active. The time that C takes to become active will
depend on how far to the right of γ2 is the weighted sum of C ’s inputs, because this horizontal
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FIG. 9. Three different parameterizations of a two-unit closed-loop system intended to prop-
agate a 1 forever (from the OUT unit) and to wipe out input layer activity (in the unit
IN ) once the first input pulse is detected. Activation over time is shown for each unit in
the top two rows of each subfigure. The input signal is shown in the bottom row. A: Feed-
forward and feedback connection strengths between IN and OUT are too weak to cause
propagation of the input pulses; B: Interconnection strengths suffice for the desired behav-
ior; C: Interconnection strengths are too strong, once again causing failure of input pulse
propagation.
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FIG. 10. Parameterization for an AND gate, C.

position determines the size of the upward velocity vectors (shown in Fig. 7). For horizontal
coordinates arbitrarily close to, and greater than, γ2, the diminishing upward velocity vector
length indicates that C ’s ramp-up time will be arbitrarily long. (Strictly speaking, the time
to approach an attractor is always infinite, since attractors are approached exponentially.
By ‘ramp-up time’ we refer instead to the time required to approach within some nonzero-
diameter neighborhood of an attractor, which happens in finite time.) Thus, faster decision
making requires the sum of input from A and B to exceed γ2 by a larger amount (that is,
to excite C more strongly).
With strong A→C and B→C connections (denoted wCA and wCB respectively), however,
there is the potential problem that strong activation in only one of A or B will be sufficient
to activate C . In order for C to retain the property of being a conjunction detector, the
connection strength from each of A and B to C must be less than γ2−
. Thus a requirement
for faster conjunction detection requires both that θC be larger and that the feedforward
connection strengths be larger and roughly equal, each less than γ2−
, and with sum greater
than θC−φ.
Finally, we note that the connection strengths used in this discussion are approximations.
The units A and B in this example will never quite reach an activation of 1 or 0. Weights
and θ’s must therefore be set with a margin for error that is discovered through trial and
error when building a system (in our experience, this is quite easy to do).
We have shown the parameterization of a three-unit network that computes an AND
function. We omit the description of OR and NOT functions; interconnection strengths that
compute these functions are straightforward modifications of the values depicted in Fig. 10.

4.4 Using attractors in the form of latches to maintain state
We now address the means by which the proposed system can maintain the representation
of an FSA state in between the reception of transition-triggering signals, and the means by
which signals can trigger transitions from one FSA state into another.

 at P
rinceton U

niversity on S
eptem

ber 7, 2010
jigpal.oxfordjournals.org

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[15:43 2/8/2010 jzp046.tex] Paper Size: a4 paper Job: JIGPAL Page: 728 705–760

728 A symbolic/subsymbolic interface protocol for cognitive modeling

We do this by parameterizing the strength of a connection from the old state-encoding unit
(or units) to the new state-encoding unit(s) — and from the input to the new state-encoding
unit — so that together, the old state plus the new input cause activation of the new state.
That is, each state-encoding unit acts as an AND gate that detects the conjunction of the
old state and the new input, and whose hysteresis properties maintain the new state after
the input disappears, even in the presence of noise. In this way, state can be maintained with
high probability and for long durations in between signals (although noise will eventually
produce an escape from the potential well defining a state with probability 1 — see Gardiner,
2004 — implying a practical limit on working memory duration).

4.5 Using flip-flops to prevent critical race conditions
There is a well-known problem with using latches to maintain state that has been solved
in digital logic design with the use of flip-flops (Hayes, 1993). The problem is that compu-
tations often need to use the maintained state in order to compute the next state. If state
is maintained by latches, then the old state can begin to be overwritten by a new internal
signal even as that signal is being computed. This can easily result in a failure to complete
the computation of the next state. In that case, the result is an unpredictable state, or a
rapid oscillation between 1 and 0 known as a ‘critical race’ condition, or even metastability:
persistence in a state in the analog state space that is not within any of the symbol regions.
To handle these problems, flip-flops are used in digital logic to ensure that only one
transition is possible before some additional control signal is received on an enable line,
usually from a central clock. Flip-flops maintain two copies of a bit value: the current bit
value, and a new value that will become current when the next control signal is received.
Rules can be applied to transform old values into new values, but without overwriting the
old values until the next control signal. This eliminates any possibility that in the process
of computing a new value, the old value becomes destabilized before the computation of the
new value is complete. The use of clocked flip-flops is the defining feature of synchronous
digital circuit design, and it heavily influences the discrete time-cycle view embodied in most
production systems and AI models.
Because we cannot assume a central clock, however, we make each concurrent process
determine for itself whether or not to accept input. The method we have used to handle this
issue is to cause one or more units involved in a process to strongly inhibit all of that process’s
input units once the process has begun, as in our closed-loop example. When reduced to
near-0 activation, the input units can neither excite nor inhibit the units carrying out the
process. Thus, no input will be accepted by a process until it detects that its processing
is complete, or until it decides that too much time has gone by (we discuss the latter in
section 6). Nevertheless, we can still make use of locally clocked flip-flops to solve problems
involved in generating subgoals during problem solving, as we discuss in the supplementary
materials.
To achieve flip-flop behavior, we define a gate to be a copy of an upstream latch compo-
nent, with one-to-one feedforward connections from upstream units to their corresponding
downstream units.4 A second set of inputs to the gate component is strongly inhibitory and

4In previous work (Simen et al., 2004), we speculated that the laminar and columnar structure of mammalian
cortex reflected this sort of organization, with middle and deep layers of cortex within a cortical column corre-
sponding to the input stage, and superficial layers corresponding to the output stage, or gate.
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reduces all activity in the gate to baseline when propagation of outputs is not desired. The
purpose of a gate is to prevent propagation of a latch’s contents without wiping out its
activation-based memory. We note that while neural latches are analogous to latches in dig-
ital systems, gates as we have defined them are distinctly different than digital components
with the same name (AND, NAND, OR gates, etc.). We use this term for our neural com-
ponent because it is a common term for mechanisms with the same function in the cognitive
neuroscience literature (e.g. Frank et al., 2001; Braver and Cohen, 2000).
We have now described the operations of decision making under uncertainty, thresholding,
computing logic functions and maintaining state, and we have proposed neural network
mechanisms to implement them. These operations give us sufficient computational power
to emulate any FSA (and if we allowed ourselves infinitely many filter units, we could
emulate any Turing machine with an infinitely long tape — see Simen et al., 2003). The
mechanisms are simple: self-exciting, bistable units maintain binary representations of state
for arbitrary durations; connection strengths between units and the bias parameters within
units determine the logical function that a unit computes on its binary inputs (thereby
implementing an FSA’s state-transition table); finally, the bistability of these units leads to
approximately punctate transitions into the next state. Aside from the absence of a central
clock (which we can achieve by the use of asynchronous timing methods based on closed-
loop circuit connections; cf. Sutherland and Ebergen, 2002, and Sparso and Furber, 2002),
the result is a network mechanism that is not all that different from a standard, digital
electronic circuit, in which units play the role of capacitors and transistors, and connections
play the role of resistors. Neural automata of this type can then be used to control a hierarchy
of truly subsymbolic processing, as might be carried out in hybrid neural-symbolic models
of motor control in animals and robots (e.g. Ritter et al., 2007).
Our discussion of logic-level mechanisms is not yet complete though. We must now consider
how decisions are made in the presence of processing conflict — an operating condition
described below that typifies the operation of parallel-processing systems such as production
systems, but a condition that is purposely precluded by standard sequential-circuit design
techniques in digital electronics in order to ensure predictable operation (Hayes, 1993). Since
the brain appears to be a parallel processing device, conflict constitutes a central concept
in cognitive neuroscience (Botvinick et al., 2001). Aside from the capacity for subsymbolic
decision making, it is the presence of processing conflict and mechanisms for resolving it that
most distinguish our proposed architecture from standard digital computing techniques.

5 Voting processes that implement if-then rules

Production systems5 (e.g., Anderson and Lebiere, 1998; Just and Carpenter, 1992;
Laird et al., 1987; Kieras and Meyer, 1997) are used widely in cognitive psychology and
AI to model cognition. These systems exhibit flexibility in their operation relative to stan-
dard computer programs, because they decompose the potentially long, complex routines of
a standard program into sequences of smaller instructions – if-then rules, or ‘productions’ –
which can be conditioned on the state of the world and on current goals, and which can be
executed in parallel. Thus production systems are able to sample the world frequently, detect

5We use the term ‘production system’ to refer to any architecture sharing the basic structural features of if-then
rules and a working memory. Under our interpretation, this also includes systems referred to as ‘classifier systems’
(Holland, 1986b), and probably others.
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and handle errors quickly, and interrupt long routines if necessary. They are also amenable
to powerful learning strategies such as ‘chunking’ (Anderson and Lebiere, 1998; Laird et al.,
1986; Miller, 1956) that compile successful rule-sequences into single rules, thereby speed-
ing performance, as well as stochastic, exploratory rule-creation processes in some systems
(Holland, 1986a).
Production systems consist of a working memory (WM) for symbolic information (whose
contents are typically updated frequently), and a long-term memory of productions (whose
contents typically endure for much longer durations). The typical processing scheme for such
a system is that the conditions of the production rules are repeatedly matched against the
contents of WM. Any rule whose conditions are satisfied becomes a candidate to make the
changes to WM specified by its post-condition. These rules are said to ‘match’. Conflict
resolution processes that vary among production system architectures may then determine
which rules actually execute their post-conditions, or ‘fire’. These changes typically occur
at the onset of the next processing cycle and do not produce matches of other rules on
the current cycle. In Soar, many productions can fire in parallel and generate preferences
about the next sequential step to take in problem solving. A separate decision cycle then
consults the preferences and commits to a specific mental operator (Laird and Congdon,
2006). ACT-R instead allows only one production at a time to fire (Anderson et al., 2004).
In order to implement production systems in neural networks, the mechanisms underlying
this cyclical process must be addressed (or the cyclical model must be modified) in order to
meet a constraint that we and others have hypothesized: this is that the brain lacks a global,
synchronizing clock circuit. Furthermore, a means must be addressed by which circuits can
make decisions about which rules to fire when there is processing conflict between multiple
matching rules.
This section addresses both issues in the same manner as Polk et al. (2002). It emulates

‘matching’ by a voting process among competing candidate rules (cf. Grossberg, 1980b;
Feldman and Ballard, 1982). This voting is implemented as a high-dimensional diffusion
process in a competitive attractor network (or ‘module’), driven by connection strengths that
implement preferences among candidates and that connect modules together (cf. the similar
feedforward network approach, or ‘Core Method’, for encoding propositional logic statements
in Bader et al., 2007). It emulates ‘firing’ as a threshold-crossing event, implemented by
strongly self-excitatory neural network units that can operate without governance by global
clock signals.

5.1 Production implementations: if-then rules and conflict
We characterized the operation of n-dimensional attractor networks in response to a vector
of n constant inputs in section 3. We are now ready to take our most significant step toward
the implementation of production systems, by implementing working memory symbols and
symbolic productions that may conflict with each other, as was done in Polk et al. (2002).
To do so, we consider a simple example of the type of productions necessary for performing
the Tower of London task (Shallice, 1982).
This task is depicted in Fig. 11. In it, a participant is shown a starting configuration and

a goal configuration of colored balls on pegs; the participant is then asked to transform the
starting configuration into the goal configuration by moving one ball at a time. The TOL
task has been used extensively to assess planning impairments and is thought to depend
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FIG. 11. The Tower of London task. Here we have arbitrarily numbered the possible goal
positions for easier reference.

TABLE 1. A simple set of productions.

1) IF (Position2 = Red)
THEN (Move = Red-4)
Preference = 1

2) IF (Position1 = Green)
THEN (Move = Green-4)
Preference = 0.5

crucially on goal management (Shallice, 1982). It is a variant of the Tower of Hanoi problem
(Simon, 1975), but in contrast to that task, there are no constraints specifying which balls
can be placed on which others. Instead, the pegs differ in how many balls they can hold at
one time (the first peg can hold one ball, the second peg can hold two, and the third peg can
hold three). There is typically one red, one green and one blue ball. Participants are usually
asked to try to figure out how to achieve the goal in the minimum number of moves and are
sometimes asked to plan out the entire sequence of moves before they begin (Carlin et al.,
2000; Shallice, 1982; Ward and Allport, 1997).
In the model discussed in Polk et al. (2002), the representation of the current task state
consists of the following symbolic attributes (among others): six numbered gameboard posi-
tion attributes, each of which can take on one of the four possible color values — blue, green,
red, and empty — indicating the color of the ball that currently occupies that position; and
a move/action symbol, with eighteen possible values corresponding to every possible con-
junction of a ball to be moved and a target position for it to occupy. (Here we rely on a
conjunctive code for binding ball colors to positions; a dynamic binding mechanism, which
we do not model in this paper, could presumably use fewer units to represent the same thing.)
Given the right vector of inputs, we can cause any of these attractor modules to converge
to the desired values so that any combination of attribute/value pairs can be represented.
Now we address the general interconnection pattern between modular networks that allows
us to produce these constant input vectors. Before considering the production implementa-
tion in full generality, we begin with a simple example. Consider the set of two productions
in Table 1, which use a Soar-style preference encoding.
In this system, the current state of the gameboard determines which rules match. To imple-
ment the two productions, we use three attractor modules: Position1 and Position2,
representing the antecedent conditions of the production, and Move, representing the con-
sequent of the production. Each Position module uses four pairs of units for representing
four possible ball colors, each pair consisting of an accumulator feeding into a threshold
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FIG. 12. A simple example of a network implementing two productions. We show only the
units of interest within each module (there are three additional pairs of units in each of the
six total Position modules, and sixteen additional Move pairs in the Move module).

unit. The Move module consists of eighteen accumulator/threshold pairs for representing
moves. We depict connections among the units of interest in these modules in Fig. 12 (the
full model is depicted in the Supplementary Materials available online).
The weights in Fig. 12 define a net input vector in the two-dimensional space of the two

Move accumulator units shown. Such vectors are depicted in Fig. 13. Any preference vector in
which the elements are not equal will ultimately drive the attractor network into one symbol
region or the other (assuming properly parameterized thresholds and bias terms — how to
achieve such parameterizations through feedback control is the subject of appendix C.). We
therefore partition the input space into two half-plane regions by the diagonal line running
through the origin and the point (1,1). If no noise is present in the system, the network will
deterministically enter the symbol region in the same half-plane as the input vector. If noise
is greater than 0, then the probability of entering the symbol region in the same half-plane
is greater than that of entering the other symbol region, but it is less than 1.
We can continue in the following way to translate productions into neural networks more
generally: create an attractor network for every antecedent attribute that appears in a rule,
with one unit in the network devoted to each value that that attribute can take on. Then
create weights from those networks to networks that similarly encode the consequents of
each rule, with values equal to the specified preference strengths.
Specifically, for the case of n antecedent units projecting in a one-to-one pattern to
n consequent units (see the five-unit example in Fig. 19), set the preference ratings Pi ,
(i=1...n) as follows. (For simplicity, we assume that the antecedents are binary-valued.)
Pick a base strength B and a difference value, �, such that P1=B, P2=B+�, ... Pn=B+
(n−1)�. The difference value � between preferences should be large enough to guarantee a
desired minimum level of expected accuracy in choosing the most preferred option, as well
as a desired maximum response time.
While reaction time distributions and expected accuracies are quantities that are given by
an explicit formula in the case of the drift-diffusion model of two-alternative decision making
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FIG. 13. A simple example of three individual preference ratings (arrow-head vectors) speci-
fied explicitly by productions, and two combinations of emergent (implicitly specified) pref-
erences (circle-head vectors). Ratings are transformed in continuous time into rankings by
the competitive dynamics of the consequent attractor network. Thresholds on consequent
unit activity are then used to select a unique winner based on these rankings. Without noise,
the highest ranked candidate always wins. When noise is present, a distribution of winners
and of decision times results in which the expected choice proportions are ranked in order
of the preference ranking.

(which properly parameterized neural networks approximate), they can only be computed
numerically by solving partial differential equations or by Monte Carlo simulations in the
case of decision making among three or more options (McMillen and Holmes, 2006). In
programming the model of Tower of London performance in Polk et al. (2002), we used a
process of trial and error to set B and � manually (a task which was made easier by the
use of the feedback control methods discussed in appendix C.).

5.2 Preference blending
While we do not currently have an automated procedure for setting (or learning) these
values, a formal statement of the preference-encoding scheme used by the proposed rule
implementation may be helpful for future work on this problem. Let the outputs of the
antecedent threshold units be the vector A (whose ith element is Ai), the outputs of the
consequent accumulator units be labeled Ci , and the uniform lateral inhibition between
consequent accumulators be ξ (we assume uniformity only for simplifying our discussion).
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Assuming binary-valued outputs from the antecedent units, the net input, Ii to consequent
unit i is given by Eq. 15:

Ii=AiPi−
∑
j �=i

ξCj . (15)

Given the nonlinear activation functions of all units (Eq. 2), which prevents outputs from
going negative, we can assume that Ci is effectively zero whenever Ai is zero. Thus, whenever
any term Aj ,j �= i, is zero in Eq. 15, no competitive influence is exerted by consequent unit j
on consequent unit i. In this way, if antecedent unit j is inactive, then option i can become
the most preferred option, even if the connection strength feeding into consequent unit i is
smaller than that feeding into consequent unit j .
This picture becomes more complicated when one-to-one connections are generalized to
many-to-one and many-to-many connections. In such a case, we must work with a matrix
W (whose ith row is labeled Wi) that encodes the preferences P, as in Eq. 16 (which is
identical to Eq. 13 apart from changed variable names):

Ii=(WA)i−
∑
j �=i

ξCj . (16)

As it happens, most of the interesting action-selection functionality of the Tower of Lon-
don model in Polk et al. (2002) and in the supplementary materials involves many-to-many
connections. Unfortunately, such connections create a serious difficulty for the straightfor-
ward mapping of production preferences onto weights that we have described up to this
point. The most obvious use of preferences in such a system is to list all matching pro-
ductions in order of the static preference values attached to them, and then to choose the
most preferred. In our system, in contrast, preferences change depending on which rules are
matching (they blend together in the form of a weighted sum). We address this problem in
the context of fully general preference implementation in appendix D., keeping in mind that
what we ultimately want is a means by which any desired preference ranking among alterna-
tives, in response to any current state of working memory, can be imposed by a programmer
or learned by a learning algorithm.

6 Models of complex cognition: problem solving

The preceding sections described architecture components that make sequences of decisions
and implement if-then rules in a process analogous to holding an election. This is the most
important step in implementing production systems. Still, several other high-level architec-
tural features of production systems are required before models built from these components
can achieve the functionality of systems like Soar and ACT-R. Principal among them is the
capacity to make actions contingent both upon immediate states of the environment, and
upon internally maintained representations such as goals and subgoals (Newell, 1990).
Goals and subgoals in our system are represented in the same way as any other symbolic
information, using recurrent latch mechanisms. For simplicity’s sake, actions too are repre-
sented as the symbolic outcomes of if-then decision processes. Goals exert their influence on
these decision-making processes by favoring the outcomes that would help achieve a given
goal, using direct, excitatory connections to the units representing those outcomes. This
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FIG. 14. Parkinson’s patients display latency impairments (slower planning prior to first
move) in the Tower of London task. Increased latency relative to control subjects is shown
by patients at two different stages of the disease, with and without medication in the early
stage.

idea is quite simple, and is prevalent in cognitive neuroscience models of related phenom-
ena such as attention (Miller and Cohen, 2001; Desimone and Duncan, 1995; Cohen et al.,
1990). This approach to goal implementation leads directly to predictions about the cognitive
and behavioral effects of brain damage and disease.
In Polk et al. (2002), we discussed the use of goal and subgoal representations in the

context of a model of the Tower of London task. In Polk et al. (2002) and in Simen et al.
(2004), we discussed the application of different versions of this model to behavioral data
from human task participants, including participants with, respectively, prefrontal brain
damage and Parkinson’s disease. One virtue of a subsymbolic approach to modeling these
tasks is that brain damage and disease can easily be modeled by parameter changes, such
as the weakening of connection strengths or elimination of processing units, for which no
obvious counterpart exists in purely symbolic approaches. Here we review these results; in
the supplementary materials, we cover the detailed structure and operation of the model in
Simen et al. (2004) (this model is similar to that of Polk et al., 2002, but it makes use of
the sequential processing mechanisms discussed in section 3 to eliminate the latter model’s
dependence on symbolic computer code for sequentializing performance).

6.1 Human performance in the Tower of London task
In Fig. 14, we show the basic behavioral results (Owen et al., 1995) that will guide our
interpretation of model performance. In this experiment, participants were instructed to
plan solutions to problems that varied in the minimum number of moves required for their
solution. Once they had decided on a solution, the task required them to indicate the first
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move that the optimal solution would require. If they made an error (i.e., their first choice
was not the first move in an optimal solution trajectory), they chose again.
In the top row of plots in Fig. 14, the vertical axis represents a measure of response time:
the time from problem presentation to first move selection. The horizontal axis represents
the number of moves in the optimal solution. In the bottom row of plots, the vertical axis
represents a measure of accuracy: the number of first-move selections prior to selecting the
optimal first move.
As can be seen in the bottom-left plot in the figure, prefrontal patients clearly demon-
strate accuracy impairments in problems requiring 4 or 5 moves, relative to normal control
participants (for problems requiring fewer moves, the accuracy differences were statistically
insignificant). However, they show little impairment in terms of latency, as the top-left plot
shows.
Parkinson’s patients were examined under medicated and unmedicated conditions, and
with a range of symptom severities. The top row of plots shows that in all medication
and severity conditions, Parkinson’s patients demonstrated latency impairments relative to
control participants, and the impairment was more severe for harder problems (problems
requiring more moves). The bottom row of plots shows a pattern of accuracy impairments
that is less clear cut. Medicated patients with mild Parkinson’s symptoms showed no accu-
racy impairment relative to controls. Non-medicated patients with mild symptoms showed
accuracy impairments in the hardest problems (although an earlier study, Owen et al., 1992,
showed no accuracy impairments in this group). Medicated patients with severe symptoms
showed definite accuracy impairments (and also did in the earlier study).
By providing one account of this pattern of deficits, we will be able to evaluate the choices
we made for modeling brain circuits involved in problem solving at multiple design levels.

6.2 The influence of goals on decision making
We have discussed the use of connection strengths (like those from Perception to Action
in Fig. 15) to encode preferences among options in decision making: when the unit assigned
to one option is excited more strongly than the unit assigned to another option — because its
input connections are stronger, for example — then the first unit is likely to cross threshold
before the second. The probability of this event depends on noise levels and connection
strengths.
This probabilistic choice mechanism leads to stochastic exploratory behavior, and prefer-
ence encodings lead to exploration that is biased toward more-preferred options
(Loewenstein and Seung 2006; Montague and Berns 2002; Soltani and Wang 2006
Simen and Cohen in press). When preferences vary greatly among different options, there
is likely to be less exploration and little conflict between options, because the most pre-
ferred option will usually win and will usually do so rapidly. When preferences are nearly
equal, however, so that many options are equally competitive, a state of prolonged conflict
can ensue. To resolve it, thresholds can be set low, resulting in purely exploratory behav-
ior through rapid, random choice; or thresholds can be set high. In the latter case, some
other mechanism must instead resolve the resulting, intractable conflict between competing
options. Goals are one mechanism that can be used to resolve this type of conflict (we dis-
cuss a second, less knowledge-intensive mechanism for conflict resolution based on feedback
control in appendix C; this mechanism is essential for preventing critical problems faced by
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FIG. 15. The basic architectural framework: units in a perceptual network excite and inhibit
units in an action-selection network. Units in a goal network bias the competition taking
place in the action-selection network.

the decision making components of the proposed architecture, but we assume for the present
purposes that these problems have been solved).
A serious limitation of the weight-encoded preference approach to choice is that prefer-
ences are static in the proposed architecture. Static preferences imply a lack of flexibility
in choice that will make effective problem space search impossible. Dynamic wiring is an
obvious potential solution to this problem, but it is beyond the scope of this paper. Even
in an architecture with dynamic wiring, however, weight-encoded preferences cannot change
faster than the weights themselves. For this reason, rapid preference adjustments require
rapid weight changes if weights alone mediate preferences. Unfortunately, a large degree
of plasticity can be very disruptive to neural networks. This phenomenon is known as a
stability-plasticity tradeoff (Grossberg, 1987).
In order to carry out problem space search, however, the choice of an action to take at
any given state should be highly context-specific. The current state should certainly help
determine what the next move in the problem space should be, and search heuristics might
also play some role. Based on its success in explaining many aspects of human problem
solving behavior (Newell and Simon, 1972), means-ends analysis is the search algorithm we
emulate here (minus that algorithm’s formulation of goals, which is beyond the scope of this
paper). Under this algorithm, the most important unachieved aspect of a solution is worked
on first, and this work may generate subgoals that must be achieved before the parent goal
can be achieved. Therefore — assuming that a current goal is guiding the search — goals
must be a part of the context in which actions are selected, and goals should therefore
dynamically determine preferences.
We implement dynamic preferences while avoiding the stability-plasticity dilemma and
even the need for dynamic wiring by drawing on the idea of activation-based biasing
(Miller and Cohen, 2001; Desimone and Duncan, 1995; Cohen et al., 1990). We use a sep-
arate network (Goals in Fig. 15) as a context representation that acts to favor a subset
of the units within a decision making network. This separate goal network may be capable
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of representing arbitrarily many contexts. Each context is assigned a strongly self-exciting,
approximately binary unit. This unit again uses a suite of static connection strengths to
excite units in the decision network and thereby create a temporary preference ordering
(one that is in force as long as the context unit is active). In a different context, though, a
different context unit becomes active and the previously active context unit inactivates —
a process that can happen rapidly. Now the strengths of the new unit’s connections to units
in the decision network determine the choice preferences in that network (probably different
preferences). However, the previous preference ordering is not lost as a result of connection
strength adaptation; instead, the inactive context unit’s connections to units in the decision
network maintain the memory of the previous preference ordering for later, rapid retrieval.
The hybrid neural/symbolic Tower of London-solver modeled in Polk et al. (2002) used
goal context units in this way to bias the selection of actions in the Tower of London task. In
that model, the current state of the game determined which moves were possible (the units
representing currently illegal moves, such as moving a ball to a position which is already
occupied, were strongly inhibited). The units representing the current state of the game also
defined a preference ordering among possible moves, by favoring moves of balls to lower
positions on a peg over positions higher on the same peg. This still left multiple options
available to the system at many choice points during problem solving. Goal units played
their roles at these choice points, guiding the system to select from among a restricted subset
of actions by temporarily increasing the preferences for the favored subset (in fact, actions in
Polk et al. (2002) and in the model presented in the supplementary materials are restricted
to a subset consisting of only the action that would obtain the goal in one move, but this
restriction may be loosened).
If goal-unit connections to a decision network are strong enough and noise is weak enough,
this guidance can cause nearly deterministic selection of the favored action. However, the
key to proper problem-space navigation is to balance the excitation of goal-achieving actions
against the inhibition used to prevent illegal moves. Our model relied heavily on such inhi-
bition of the main decision-making network; this was a modeling choice that is consistent
with evidence from brain imaging for selective facilitation and suppression by attentional
processes of localized, functionally defined brain areas in tasks with conflicts between stim-
ulus dimensions (Polk et al., 2008). When the action that would immediately achieve a goal
cannot be chosen because of massive inhibition, the model can either choose some other
move randomly, or remain stuck in a problem-solving impasse.

6.3 Normal performance, simulated PFC damage, and simulated
Parkinson’s disease

We now review the results of previous simulation studies, showing how a model of Tower of
London performance captures the response time and accuracy of typical task participants
and of patients with prefrontal damage or Parkinson’s disease. As in Polk et al. (2002), we
assume that PFC damage, especially damage to dorsolateral prefrontal cortex (DLPFC),
reduces or eliminates the populations of neurons that implement a network devoted specifi-
cally to representing subgoals. This assumption is consistent with other modeling work that
assigns the DLPFC a role for working memory in problem solving (e.g., Goel et al., 2001), as
well as with the behavior of prefrontal patients (Kimberg and Farah, 1993). These patients
can frequently carry out basic tasks, but cannot organize sequences of basic behaviors into
coherent, complex behavior that achieves goals.
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FIG. 16. Comparison of the model in Polk et al. (2002) (right panel) to normal and prefrontal
performance in the Tower of London task from two studies (left two panels). Reprinted
from Cognitive Brain Research, 15, Polk, T., Simen, P., Lewis, R. and Freedman, E. A
computational approach to control in complex cognition, pp. 71–83, Copyright (2002), with
permission from Elsevier.

As shown in the left two panels of Fig. 16, prefrontal patients encounter difficulty in
achieving an optimal solution to the puzzle (a solution trajectory that involves a minimal
number of moves), but only when the required number of moves to solution exceeds three
(Shallice, 1982; Owen et al., 1990). The model of Polk et al. (2002) displays a very similar
pattern: no more than the optimal number of moves are made when problems require only
two moves of a ball. However, when three or more moves are required, the problem typically
requires a subgoal: that is, one or more of the balls must not be moved to its final, goal
position, even when that position is free, so that the free position can be used temporarily
by another ball (ordinarily, so that the order of a stack of balls can be reversed). When
our model’s subgoal module has a reduced ability to guide action selection by voting for
certain actions and against others, noise leads more often to random selections of a ball.
Furthermore, as shown in Fig. 17, base-level goals defined by the final goal configuration
of the problem tend to override a reduced subgoal influence in such situations, leading to
greedy moves of balls to their final positions. This occurs despite the fact that a lookahead
search would have identified that such a move should be inhibited until after a subgoal has
been achieved.
In severe cases of Parkinson’s disease, the same pattern of deficits is seen; in milder cases,
the accuracy of performance is indistinguishable from normal performance. At all levels of
Parkinson’s severity, however, impairment in problem solving latency (the time to begin
problem solving once a problem has been presented) is seen. Interestingly, however, this
impairment appears only on problems requiring more than three moves. A similar latency
effect is not seen in prefrontal patients (Owen et al., 1992, 1995).
To simulate the effects of Parkinson’s disease, we weaken the connection strengths that
implement propagation delays within an interval timer circuit that is used for impasse detec-
tion during problem solving (Simen et al., 2004). Interval timing deficits — specifically, slow-
ing of an internal clock — are a robust phenomenon in cases of Parkinson’s disease (Meck,
1996). The impasse timer in our model, which is discussed in more detail in the supplemen-
tary materials, is used to sense when a period of intractable conflict between actions has
extended beyond a certain duration. When this occurs, the fully functional model employs a
cascade of asynchronous logic circuits (discussed in section 4.3) embodying basic knowledge
about block-stacking tasks to compute which subgoal the model should work on in order to
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FIG. 17. Impaired ability of the prefrontal model to inhibit ‘prepotent’ moves in Polk et al.
(2002). Problem solving difficulties in that model stemmed from an inability to prevent
moves that achieve component goals when they are legal, but conflict with the current
subgoal. The two problems shown involve the same moves, but in the reverse order (initial
and goal states are reversed). Damage to the model (i.e., weakening of connections exerting
subgoal influence on action selection) leads to disproportionate difficulty with the problem
on the right in which prepotent moves must be inhibited. Reprinted from Cognitive Brain
Research, 15, Polk, T., Simen, P., Lewis, R. and Freedman, E. A computational approach to
control in complex cognition, pp. 71–83, Copyright (2002), with permission from Elsevier.

make base-level goals achievable. This timer sequentializes problem space search by bottling
up activation in an action selection network, and allowing this next step of problem solving
to proceed only after the predetermined delay.
Since the timer slows down under simulated Parkinson’s disease, problem solving also
slows down in this simulated disease condition — but this slowdown in problem-solving
only occurs when subgoals are required. When they are not required, the model proceeds
through action selection without any additional bottling up of processing in the action
selection network. For this reason, the model only slows down significantly when solving
problems require three or more moves, thereby replicating the response latency data in the
literature (see Fig. 18).
The basic functionality of the models discussed here rests on a symbolic representation of
task knowledge, goals and actions. However, the basic response time and accuracy predictions
of the models depend strongly on manipulations of the subsymbolic substrate supporting
this symbolic processing.

7 Discussion

The processing that occurs in a standard computer is highly sequential: most components of
the machine are not changing in activity during a processing cycle; only CPU components
such as the arithmetic/logic unit and one memory location are typically changing their values
on a given clock cycle, but these cycles are incredibly brief and computation is therefore
fast nevertheless. In contrast, of course, brains appear to involve a large amount of parallel
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FIG. 18. Impaired latency in the current model of Tower of London due to simulated
dopamine depletion (modeled as a decreased connection strength, w, that governs the speed
of a subgoal-generation timer). Latency must increase supralinearly with increasing prob-
lem difficulty since more subgoals in addition to more moves must be generated in harder
problems.

processing by relatively slow components. Furthermore, while tantalizing hints about timing
signals may be perceived in electrophysiological recordings of phase-locked oscillations across
widely separated brain areas, the basic technique of computer hardware design in which
synchronous digital logic circuits are clocked by a central oscillator seems like a non-starter
as a physical model of the brain.
Our approach to these mismatches is to assume as much parallelism as possible, and
to push as much computation as is feasible onto a substrate of untimed, asynchronous,
neurally implemented voting processes. When conflict between processes competing for neu-
ral resources forces a slowdown in processing that would be catastrophic, sequentialization
occurs: that is, an agent learns (through a process we have not specified) to implement a set
of essential sequence control mechanisms. These include processing bottlenecks (consisting
of feedback-regulated decision making components), handshake completion signals, deadline
timers and flip-flops for the prevention of critical race conditions. These mechanisms can be
straightforwardly applied to the underlying, analog processes commonly used in psychology
and neuroscience to model choice and decision making by animals across the phylogenetic
spectrum. The result is a system that can be made to approximate basic production system
behavior arbitrarily precisely.
The theoretical position staked out by this paper is consistent with the idea that infor-
mation processing systems can best be understood by decomposing them into mostly inde-
pendent levels of analysis. That is, systems can be analyzed and understood at one level of
analysis while (mostly) ignoring the details at other levels, as in other hierarchical theories
of brain function (e.g., Cooper and Shallice, 2000; Eliasmith and Anderson, 2003; Marcus,
2001; Sun et al., 2005). This approach simplifies the task of understanding, because it facil-
itates the focusing of attention on a smaller part of the overall problem at any given time.
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In accordance with this view, we have explicitly followed a levels-of-analysis organizational
scheme in the paper. Of course, the notion of total decoupling between levels is an idealization
that is not likely to bear up under close enough examination. David Marr’s position at the
end of his seminal work on vision (Marr, 1982) is consistent with this notion as well:

Question: Are the different levels of explanation really independent? Answer: Not really,
though the computational theory of a process is rather independent of the algorithm or
implementation levels, since it is determined solely by the information-processing task
to be solved. The algorithm depends heavily on the computational theory, of course, but
it also depends on the characteristics of the hardware in which it is to be implemented.
For instance, biological hardware might support parallel algorithms more readily than
serial ones, whereas the reverse is probably true of today’s digital electronic technology.
— David Marr, Vision

Indeed, we have argued that changes at the lowest levels have important impacts at the
highest levels. These show up, for example, in simulations of problem-solving performance
by patients relative to healthy control participants (Polk et al., 2002). Thus, this paper
has relied on a levels-of-analysis organizational structure, but each section of the paper
has focused on the interface between two, adjacent levels. In this way, the extent of their
independence could best be analyzed. Furthermore, this structure was intended to facilitate
understanding of the way in which the effect of a biological or psychological constraint at one
level propagates up the level hierarchy. The ultimate result was that low-level changes did
indeed have an impact on the way behavioral data could be accounted for by a computational
theory at Marr’s uppermost level of analysis. However, though we have argued that this
impact was substantial, it was not a complete revolution: the basic notion of problem-space
search carried out by a goal-driven system consisting of simple if-then rules is still the
simplest way to describe the system we have simulated. We therefore propose the principles
embodied by this system as an implementation-level theory that is roughly consistent with
much of the computational theory already proposed for explaining complex cognition, most
of it symbolic in nature.
Where this paper differs from much of this existing theory, and where it begins to overlap
with connectionist and other subsymbolic theories, is in the degree of emphasis it gives to the
implementation level. We have further decomposed Marr’s lowest level, that of implementa-
tion, into the physical and logic levels in the design-level hierarchy of computer engineering.
This decomposition has allowed us to focus on low-level modifications that borrow heavily
from neural networks and from analog computation.
We have seen that serious problems remain to be addressed before the principles in this
paper can be used to support the whole range of computational-level theorizing that cur-
rently takes place using the standard computer as its implementation-level medium. These
include the dynamic wiring and binding problems (it is worth noting that previous research
groups have attempted to merge production systems and neural networks, only to abandon
further efforts in this direction once the difficulty of the binding problem was fully appreci-
ated: e.g., Touretzky and Hinton, 1988; Touretzky, 1990). But, as will be obvious to readers
with a background in neuroscience, we have also given short shrift to the physical level, our
lowest level of analysis. We have entirely ignored the complex dynamics possible in spiking
neural networks in which neurons are governed by the Hodgkin-Huxley equations, or even
by simplifications of these equations that are not quite as simple as our RC-filter models of
populations.
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Ultimately, however, our hope is that the choice of an extremely simple model of neu-
ral computation may serve the goal of unifying disparate psychological theories that Allen
Newell spelled out in Newell (1990). Some variety of random-walk mechanisms was proposed
there as a possible substrate for a complete cognitive architecture. In his words:

Any mechanism with the common properties epitomized in Fig. 1-11 [a diagram of a
random walk decision making model] will do all right. This means that we may be able
to settle on an important schematic characterization of an elementary mechanism of
the mind. And we can trust the incorporation of this mechanism into unified theories
of cognition that may appear to have quite different structure.
— Allen Newell, Unified Theories of Cognition

Symbolic and subsymbolic modeling approaches are indeed quite different in structure. But
considering these two approaches merely as two different levels of description and focusing
on the interface between them highlights the possibility of their ultimate compatibility. In
more practical terms, a better understanding of the symbolic/subsymbolic interface may
simply help cognitive modelers pick the right tool for a given job.
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A. Filtering out noise by leaky integration

In this appendix, we detail our approach to simulating stochastic integration processes,
focusing especially on the central role of leaky integration of noisy signals in our proposed
architecture. Leaky integration is a form of sliding window averaging that is equivalent to
an exponentially weighted average of a signal y over the infinite past. In discrete time, the
weights on the samples of y follow a recursive, difference equation:

yn+1=(1−α)yn, y0=α, 0<α<1. (17)
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As n goes to infinity, these weights sum to 1. For a noisy input signal rn=sn+εn , the
estimate xn of the signal value sn is then:

xn = y0 ·rn + y1 ·rn−1 + y2 ·rn−2 + ...

= α·rn+(1−α)·xn−1
= xn−1+α·(rn−xn−1). (18)

Our goal is to minimize the difference between xn and sn — in fact, we will follow common
practice and attempt to minimize the square of xn−sn , summed over n.
Furthermore, we will consider a version of this exponential averaging that takes place
in continuous time. By doing so, we free ourselves from any dependence on a clock for
triggering samples. As the samples come closer and closer together in time,6 and as the
weights on individual samples yn are correspondingly reduced at each iteration so that the
sum does not blow up,7 the output of the discrete-time signal estimation process (Eq. 18)
asymptotically approaches the output of a low-pass RC filter. The differential equation
governing the output of such a system in response to a deterministic, non-noisy input signal
s(t) is given in Eq. 19:

τ ·dx/dt=s(t)−x(t). (19)

Here, τ =RC , where R is the resistance and C is the capacitance of an electric circuit
implementation, and the voltage V across the capacitor plates is the filter’s output.
Note that with positive feedback through a recurrent connection strength of 0<k<1 and
with a reduction in input connection strength by a factor of (1−k), a unit defined by Eq. 19
can achieve effectively any time constant (cf. Seung et al., 2000):

τ ·dx/dt = (1−k)·s−x+kx
= (1−k)·s−(1−k)·x

⇒ τ

(1−k) ·dx/dt = s−x . (20)

Modeling the effect of a filter applied to a noisy input requires one further complication
beyond moving to differential equations: we must use stochastic, rather than determinis-
tic, modeling techniques. For this purpose, we use stochastic differential equations (SDEs),
for which a well-developed theory of integration exists (the Ito calculus) (Gardiner, 2004;
Oksendal, 2003). The effect of a low-pass filter applied to a noisy input can now be modeled
as in Eq. 21:

τ ·dx/dt = −x+s+c ·dW /dt
τ ·dx = (−x+s)dt + c ·dW (21)

6E.g., separated by equal intervals of duration �i , with �i+1 reduced to �i/2 at the ith reduction of the
inter-sample interval.

7That is, set according to Eq. 18 — with αi defined by 1−αi≈exp(−�i/τ)/2, with τ defined by Eq. 19.

 at P
rinceton U

niversity on S
eptem

ber 7, 2010
jigpal.oxfordjournals.org

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[15:43 2/8/2010 jzp046.tex] Paper Size: a4 paper Job: JIGPAL Page: 751 705–760

A symbolic/subsymbolic interface protocol for cognitive modeling 751

In this case, s(t) in Eq. 19 is replaced by s(t)+c ·dW /dt, where dW /dt is idealized white
noise, weighted by a constant,8 c. Strictly speaking, dW /dt is not a well-defined stochas-
tic process in continuous time, although a discrete-time version of dW /dt is quite easy to
define and to simulate: dW /dt evaluated at discrete time points n is simply a sequence of
samples from a Gaussian distribution centered at 0. Typically, n indexes a sequence of time
points spaced apart by some fixed duration �. The limiting form of dW /dt as � becomes
infinitesimal is not well-defined, but the limit of the integral of dW /dt(n) — a Wiener pro-
cess, denoted by W — is (Oksendal, 2003). A Wiener process, or Brownian motion, is just
a continuous-time version of a random walk with steps selected from a normal distribution.
For this reason, we can easily simulate the system9 of Eq. 21 just as we can Eq. 19, using
Euler’s method: x(t+�)≈x(t)+�·dx/dt(t). Now, however, at each update of the value of
x in a small, discrete time step of size �, we also add a normal random variable with mean
0 and standard deviation (c

√
�)/τ (Higham, 2001). Obviously then, the way to eliminate

any effect of white noise is to make τ large; however, the tradeoff is that a system with τ

too large cannot track changes in s rapidly enough.
Of course, the idealized processes of Eqs. 20 and 21 can take on unboundedly large val-
ues, but the firing rates of real neural populations are necessarily bounded below by 0 and
above by some maximum. Similarly, offset voltages and saturation effects are observed in
real amplifiers (Hopfield, 1984; Mead, 1989). Saturation bounds impose a sigmoidal nonlin-
earity on the output of the RC filter model in Eq. 21 (in applications to brain-modeling,
such nonlinearities have been modeled as a logistic function, cf. Cowan, 1967, which is a con-
vention that we too will follow). With sigmoidal nonlinearities in their activation functions,
neural network units can be combined to approximate any analog computation conceivable
(Cybenko, 1989; Rumelhart et al., 1986).

B. Simplified unit equation

We now derive a simplified, single equation for stochastic unit activity (cf. similar arguments
in Brown et al., 2005) from the two-equation systems found in (Hopfield and Tank, 1985).
The deterministic part of this equation is identical to standard neural network models,
represented by Eqs. 22–23:

τ ·dxi =
⎡
⎣−xi+

n∑
j=1
wij

(
f (xj)+cij dWjdt

)⎤
⎦dt (22)

=
⎡
⎣−xi+

n∑
j=1
wij f (xj)

⎤
⎦dt +

n∑
j=1
(wijcijdWj),

8We keep c constant for simplicity, but a variable c may be more plausible. In the case of thermal noise in
electrical circuits, it depends on the amount of heat generated by voltage across resistors (Gardiner, 2004), and in
the case of neuronal circuits, it may increase with the firing rate.

9We can also solve it analytically when s is a constant. In such a case, Eq. 21 is a stochastic process — specifically,
an Ornstein-Uhlenbeck process — with an asymptotic mean value given by Eq. 19, and standard deviation c/τ
(Gardiner, 2004).
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and

Vi = f (xi)= 1
1+exp(−λ·(xi−β))

. (23)

In general, we will not require the connection strengths, wij between any two units, i and
j , to be equal. However, it will simplify matters to assume that the noise coefficients cij
on every connection between two units is the same (cij≡c), and furthermore that λ and β

are the same for all units. (Of course, it might be better to model cij as proportional to
f (xj), since neural firing rate variability tends to scale linearly with firing rate; however, the
assumption of constant cij may not make a great difference, since f is bounded between 0
and 1.) Assuming that amplification of inputs by all units is instantaneous, we can replace
f (xj) with Vj . We then arrive at a single equation for the system, Eq. 24:

τ ·dVi = df
dx

·
⎧⎨
⎩

⎡
⎣−f −1(Vi)+

n∑
j=1
wijVj

⎤
⎦dt + ...

n∑
j=1
(wijcijdWj)

⎫⎬
⎭. (24)

If we examine the deterministic part of this equation, and keep in mind Eq. 23, we see
that as f −1(V )=x approaches I for some constant input I , V must approach f (I ). Further-
more, when x is in the linear range of f , df /dx≈λ/4, and f (x)≈(λ/4)·x+(2−λβ)/4. Thus
f −1(V )≈(4V −2+λβ)/λ. We therefore get the following deterministic equation:

τ ·dV ≈ λ

4
·
(

−4
λ
V + 2

λ
−β+I

)
dt

≈
(

−V + λ

4
I+ 2−λβ

4

)
dt

≈ (−V +f (I ))dt

=
⎛
⎝−V +f

⎛
⎝ n∑
j=1
wijVj

⎞
⎠

⎞
⎠dt. (25)

It is only when V approaches 1 or 0 that nonlinearities affect the approximation, and they
will have a small effect. Thus we can use the following, much more manageable equation in
our simulations and analyses:

τ ·dV =(−V +f (I ))dt+ df
dx

·
n∑
j=1
wij cdWj . (26)

If we assume that λ=4 (which we can do without any loss of functionality), we can eliminate
the df /dx factor to get the simpler equation:

τ ·dV =
⎛
⎝−V +f

⎛
⎝ n∑
j=1
wijVj

⎞
⎠

⎞
⎠dt+

n∑
j=1
wij cdWj . (27)
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For λ=4 and β=0.5, the linearized version of this equation is just the equation for a
low-pass RC filter that includes the weighted effects of noise:

τ ·dV =(−V +I ) dt+
n∑
j=1
wij cdWj . (28)

C. Integral feedback control of decision making to
guarantee the winner-take-all property

In section 3 we discussed the use of lateral inhibition for resolving conflict between multiple,
concurrent response processes — a technique that is a principal feature of most neural
network-based cognitive models (e.g., Grossberg, 1980a; McClelland and Rumelhart, 1981;
Cohen et al., 1990). The dynamics of attractor network convergence in laterally inhibiting,
winner-take-all (WTA) networks leads to decisions based on local competition, so that no
third party mechanism needs to be invoked, and an infinite regress in identifying the physical
locus of deciding and resolving conflict can be avoided. Furthermore, in the case of two
competing processes, conflict resolution in linear WTA networks can be made equivalent
(to arbitrarily close approximation) to the SPRT, a statistical decision making algorithm
that maximizes earned reward rate in environments with stationary statistics (Bogacz et al.,
2006; see section 3).10 Thus, no other conflict resolution mechanism is likely to offer much
better performance in such conditions (i.e., more reward per unit time or unit of behavior);
nor is any other mechanism likely to be much simpler physically.
As we have noted, though, true linearity is physically implausible, and nonlinear activation
functions are essential for the activation hysteresis upon which our architecture depends.
Unfortunately, attractor networks of nonlinear filter units often face serious difficulties in
selecting a single unit (or a single subgroup of units) for maximal activation. It is all too
easy to parameterize a network so that the intended resolution of conflict does not occur,
either because multiple competing processes remain active in parallel, or because all of the
currently competing processes are silenced (see Fig. 19).
Fig. 20 illustrates this problem in terms, once again, of a phase-plane description of activ-

ity in a two-unit decision-making circuit with symmetric lateral inhibition. In section 3, we
discussed the phase-plane of a linear system of two units: the activations of the pair corre-
spond to a coordinate pair in the plane, with unit 1 corresponding to the position along the
horizontal axis, and unit 2 corresponding to the position along the vertical axis. Starting
from the origin of the plane (i.e., both units at 0 activation), the usual idealization of a
decision process involves step-like inputs to both units: inputs that instantaneously jump
from 0 to some level Ii (Ii>0, i indexing the units), remaining there until a threshold cross-
ing event, at which time they both return to 0. Usually, I1 is greater or less than I2, and
the goal of the process is to determine conclusively which is greater (Gold and Shadlen,
2001).
The picture of such a system in Fig. 2 is complicated by the simplest form of nonlinearity
we can impose on the units’ activation functions: a hard lower bound of 0, and a hard
upper bound of 1, with linearity in between those extremes. This type of piecewise linearity
imposes a bounding box on the system’s activation coordinates. The system must always

10In the case of more than two competing processes, asymptotically optimal algorithms exist for which a neural
implementation has also been proposed (Bogacz and Gurney, 2007).
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FIG. 19. A simple example of five productions. When all five antecedent units are active
near 1, then a preference ordering exists: A′,B ′,C ′,D′,E ′. When only B through E is active,
the preference ordering becomes B ′,C ′,D′,E ′,A′. Normally, relative preferences are suffi-
ciently large to produce a unique outcome (far right panel), but it is unfortunately quite
easy to parameterize a network so that it produces multiple winners (middle panel) or no
winners.

Multiple winners
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Error in 
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placement

FIG. 20. The problems of multiple winners and no winners illustrated in terms of phase
planes. Vertical axis represents activation of unit 1, ranging from 0 to 1; horizontal axis
represents activation of unit 2, also bounded between 0 and 1. Dashed lines represent thresh-
olds applied to these activations. Exceeding threshold i generates a response of type i. Bold,
angled lines represent ‘decision planes’: restricted subspaces which the system approaches
rapidly along the main diagonal (shown by three different, curved, arrow-head trajectories).
The position of the decision plane depends on network parameterization. When the plane
is beyond the thresholds, both units are very likely to exceed their thresholds. When the
plane is below both thresholds, neither unit is likely to cross threshold — instead, the system
will converge on one of the two intersections of the plane and the bounding box. Feedback
control can be used to keep the decision plane in the middle region, in order to ensure a
single winner.
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remain inside this box, depicted with solid lines in Fig. 20. Prior to reaching a boundary,
the system evolves like its linear analogue. Once a boundary is reached, however, the system
tends to stay there. The boundary is ‘reflecting’ in the terminology of stochastic processes,
meaning that the system can in fact hit a boundary and then move back arbitrarily far from
it (until another boundary is hit), but the tendency of the system is ultimately to become
trapped against the intersection of the decision plane and the side of the bounding box in
which the unit with stronger input is most active.
Fig. 20 also shows three different decision planes, whose distance from the origin is deter-
mined by the sum of the input strengths (Bogacz et al., 2006). The plane closest to the
origin corresponds to weak inputs. It intersects the bounding box at activation values that
are below threshold — this is a case of conflict between two responses in which, on aver-
age, neither response emerges as the winner. The farthest plane from the origin produces a
rapid approach of both units toward maximal activation prior to any disambiguation — this
is a case of conflict between two responses that results in both units exceeding threshold
within a short time period, on average. If we do not make unrealistic assumptions about
instantaneous threshold crossing detection and instantaneous reset of the WTA network to
the origin, then this is a case of unresolved conflict with multiple winners that will remain
almost equally active and above threshold as long as the input signals are present. Fig. 19
shows an example of unit timecourses in a multiple-winner situation.
One solution to this dilemma that has been proposed is the k-winners-take-all (k-WTA)
algorithm that figures prominently in the Leabra system of O’Reilly and colleagues
(O’Reilly and Munakata, 2000). This approach involves a mechanism that inhibits all units
in the network sufficiently so that k winners emerge at a high level of activation. Lateral,
shunting inhibition is offered as a possible physical underpinning for the necessary compu-
tations, but knowledge about the entire network is needed to set parameters to ensure the
k-WTA property. This approach is intended as a computational shortcut for the type of
integral feedback control we propose here, although our approach is in fact computationally
quite efficient and requires the simulation of only one additional unit. This integral feed-
back control approach is based on pooled, feedback inhibition and excitation (inhibition and
excitation generated by a separate unit or set of units that receive equally strong, common
— or ‘pooled’ — inputs from all of the decision making units; this feedback is returned in
equal measure to all of these decision making units). However, we note that the difference in
proposed physical implementation of k-WTA and integral feedback control is less important
than the mathematical similarity of the computations ultimately performed by the network.
We therefore refer to this approach as pooled WTA. More complex schemes based on this
feedback control approach may be able to provide general k-WTA performance for k>1,
but this functionality is not required for simple models, such as the Tower of London task
model that we have discussed.
Based on this definition of desired decision-plane placement, we can now define an error
term that can we can attempt to reduce during decision making by applying standard
techniques from control theory: namely, integral feedback control (symbolized by the ‘I’
in proportional-integral-derivative (PID) control, a standard heuristic control approach;
Franklin et al., 1994). We define the error as the absolute value of the distance from the
current intersection of the decision-plane and the phase-plane-diagonal to the desired inter-
section. We then use feedback control to shift the decision plane’s effective position within
the phase plane whenever the sum of activations is too great: in such a case, pooled inhibi-
tion is fed back to the decision making units to offset inputs that are too strong. When too
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External Go  signal

Up-regulator

Down-regulator

Decision units

FIG. 21. A decision making circuit of sigmoidal filter units (gray units) regulated by inte-
gral feedback control units (white units). These units integrate the error between the sum
of decision making unit activity and the desired decision plane placement. The inhibitory
down-regulator has a small time constant and rapid dynamics, so that it approximates
a proportional feedback control device that switches on only when the sum of gray unit
activity exceeds a threshold. The excitatory up-regulator has a large time constant and rel-
atively slow dynamics, so that a small sum of gray unit activation does not produce rapid
up-regulation; after all, decision processes that start at the origin take time to reach sym-
bol regions of the phase plane. Boosting net excitation of the gray units too rapidly would
produce overshoot of the desired sum of activity, and instability involving oscillations of the
up- and down-regulators.

little activation is detected, pooled excitation can be used to shift the decision plane upward
into the shaded area.
The units that perform this feedback control (shown in Fig. 21) are simple, self-exciting
units that ramp up nearly linearly in activation at a rate determined by the error magnitude.
Specifically, these controller units integrate the amount by which error exceeds a threshold
determined by the units’ bias terms, β. This linear ramping can be achieved by precisely
balancing recurrent self-excitation against the leak term of Eq. 3, which is also the basis
of the interval timing mechanism discussed in the supplementary materials. The inputs to
these units consist of an equally weighted sum of the activation of the decision-making units
— this is equivalent to the average activation level in the WTA network. A pooled inhibitor
is excited by positively weighted connections from the WTA units, returning inhibition in
proportion to the excess of average WTA network activation above the desired level. A
pooled exciter has a low bias term so that its activation in the absence of inhibition is near
1. This unit is inhibited in proportion to the average activation of the WTA network, and
returns excitation in proportion to the deficit of average WTA network activation below the
desired level.
This prescription for a feedback controller works because it is the sum of decision unit acti-
vation — rather than the product or ‘Hopfield energy’ (Hopfield, 1984), as in Botvinick et al.
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(2001) — that is used to determine the feedback signal. In any symmetrically, laterally
inhibiting WTA network with two units, the sum of unit activations is constant along
any decision plane (because every decision plane is equivalent to a contour of the function
V1+V2, where Vi represents the activation of the ith unit). Thus, detecting the deviation
from desired decision plane placement can easily be done by summing WTA unit activations,
and the weighted sum input function of our leaky integrator units is already perfectly suited
to this computation.
We now have a means of supplying positive or negative feedback to a WTA network
(specifically, the input layer of a module) in proportion to that network’s integrated deviation
from a simple reference value for average activation. We now face the standard problems
that control engineers face in supplying control inputs to their systems: too small a gain
on the feedback, and error is corrected too slowly, or it leaves a residual error that cannot
be eliminated (steady-state error); too high a gain, and the system is liable to undergo
wild oscillations in response to perturbations. In our case, this would mean a decision plane
that ricochets back and forth from the origin to the upper-right corner of the phase-plane
bounding box. Furthermore, we need to allow at least enough time for the system to reach
the decision plane before supplying it with strong, supplementary excitation, which would
then cause overshoot and oscillations, or the multiple-winner problem we are trying to avoid
in the first place.

D. Voting in full generality

We now address the fully general case of ranking preferences among productions by using
linear combinations of antecedent unit activations.
Formally, we wish to be able to map any binary vector of antecedent latch unit activations
onto any preference ordering among consequents. This preference ordering is defined by
the weight matrix connecting the antecedent units to the consequent units. If there are
N antecedent units, then there are 2N unique binary activation patterns. If there are M
consequent units, then there are M ! distinct preference orderings. Preferences are vectors in
M -space. The weight matrix is equivalent to one form of a rated voting system for expressing
the preferences of a group of voters. In this analogy, a participating voter is equivalent to
an active antecedent unit, and the candidates for a one-winner election are the consequent
units.
In a ratings-based voting system, voters express preferences by assigning numerical pref-
erence values to each candidate, rather than an ordinal list of relative preference rankings.
Unlike rankings-based voting systems, a ratings-based system is not covered by the Arrow
impossibility theorem — that is, a ratings system can achieve a unique winner (even for
N >2 and M >3, which rankings cannot) while satisfying the constraints of the Arrow
theorem. These constraints describe the intuitively reasonable properties of a fair voting
system (Arrow, 1950).
Nevertheless, the particular rating method we have proposed for aggregating preferences
— linear combination — is highly constrained. The ith column of the M×N weight matrix
that defines the interconnections between N antecedents and M consequents corresponds
to the preference ratings of the ith antecedent voter for the consequent candidates. This
preference rating defines a vector in the space of consequent unit inputs. An election involves
using the vector sum of all active voters’ preference vectors as the input to the stochastic
decision making process implemented via the competition between consequent units.
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FIG. 22. A partition of three dimensional space into 6 = 3! non-overlapping regions, each
corresponding to a distinct preference ranking. The perspective is toward the origin down
the vector (1,1,1), which points directly out of the page.

Ranked preference orderings are determined in M -space by dividing each pair of dimen-
sions by an (M−1)-dimension hyperplane that intersects the two dimensions in question —
call them dimension j and k — along the 45◦ line (the vector with element j and k equal
to 1, and 0s in all other positions). These planes divide the space into regions of points
which favor dimension j over k and regions in which k is favored over j (Fig. 22 illustrates
such a partition in the case of 3 consequent units). Given our decision making mechanism,
whenever dimension k is favored over all others, it is the most likely to win the election,
as in the two-dimensional case. However, the closer this preference vector is to a boundary
between regions, and the noisier the inputs are, the less likely the leading candidate is to be
selected.
This voting system cannot implement arbitrary mappings from binary antecedent vectors
to consequent preference-ranking partition regions. This can be shown by a simple example
in which three antecedent units vote for two candidates (Fig. 23).
Suppose that we have encoded the preferences of two antecedent units — units 1 and 2 —
among two consequent units — units A and B. Suppose that these preferences correspond
to the vectors labeled ‘Pref1’ and ‘Pref2’ in Fig. 23. In this case, unit 1 prefers B to A (the B
value of this preference is greater than its A value), and unit 2 prefers A to B. The linear
superposition of these preference vectors is a point in the B>A subspace; thus the two units
together have a slight preference for B over A. This preference ranking is encoded in tabular
form in the third row of Table 2 as 110−→B>A.
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conjunction of 
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FIG. 23. A simple example of infeasible explicit preferences (arrow-head vectors, Pref 1, Pref
2 and Pref 3), and the emergent preferences generated by their combinations (circle-head
vectors). The open circle represents an emergent preference rating of the combination of Pref
1, Pref 2 and Pref 3. This rating generates a ranking of consequent 1 higher than consequent
2. However, this ranking conflicts with any explicitly programmed production that matches
antecedents 1 through 3, yet specifies a rating that ranks the alternative outcome (consequent
2) higher. In order to make such a system of explicit ratings feasible, we add a conjunction
detector (a binary AND gate) to the pool of consequent units, Pref 2∧3.

Now suppose we attempt to add an additional antecedent unit, unit 3, and to connect it
to the consequent units in order to encode 101−→A>B, 011−→A>B and 111−→B>A.
This set of context-dependent rankings cannot be implemented given the existing preferences
of units 1 and 2. Fig. 13 shows graphically how existing preferences define linear constraints
that separate the plane of consequent unit activations into feasible and infeasible regions
(respectively, regions where a new voter’s preferences lead or fail to lead to a desired net
preference ranking, given existing preferences). The intersection of the feasible half-planes
defined by the set of productions in Table 2 is necessarily the empty set, regardless of the
numerical ratings involved.
This example highlights what appears at first to be an unavoidable contrast between the
behavior of our proposed implementation and the behavior of typical production systems.
In Soar, when there is a match of multiple rules that propose different candidate operators,
preference information is used to determine which operators are selected. ACT-R uses a
system based on the activation levels associated with chunks and production utility values
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TABLE 2. Preference orderings of three antecedent units, 1, 2 and 3, among candidate con-
sequent units A and B. The preferences of unit 1 are exerted on the outcome (i.e., unit 1
votes) whenever there is a 1 in the first column, labeled Pref1; this corresponds to a state
of high activity in unit 1; a 0 corresponds to inactivity and no voting. The same is true for
units 2 and 3. Rankings among A and B can depend on which subsets of antecedents are
voting.

Pref 1 Pref 2 Pref 3 Aggregate preference ranking

1 0 0 −→ B>A
0 1 0 −→ A>B
1 1 0 −→ B>A
1 0 1 −→ A>B
0 1 1 −→ A>B
1 1 1 −→ B>A

associated with rules themselves to determine which single rule to fire. The precise definition
of chunks, operators and so forth is unimportant for our purposes. What is important is that
in both systems, some method of rating productions numerically leads to a ranking, after
which the highest-ranked production or operator is selected.
Our choice of production implementation derives, instead, directly from our model of neu-
ral processing: inputs to a unit are weighted by connection strengths and summed together
to define the net input to a unit at any given moment. For this reason, it will be impossible
for us to make a qualitative distinction between matching and firing. In contrast to the
all-or-none behavior of rules in Soar and ACT-R, every matching rule under our implemen-
tation necessarily exerts at least some miniscule influence on the outcome probabilities of
a decision. Furthermore, a full match is not necessary to exert this influence: graded levels
of activation in antecedent units produce a graded preference effect. The result is that the
ranking operation that is carried out by the attractor dynamics within the consequent mod-
ules of all matching productions will be applied to a linear combination of the preferences
supplied by the matching antecedents, rather than to a list of the preferences themselves.
In another divergence from some production systems (e.g., ACT-R), only those consequents
that conflict with each other are ranked in a single ranking; if two consequents A and B
of matching productions do not conflict with each other and are the highest-ranked conse-
quents among those with which they do conflict, then A and B will both be executed in
parallel. Like EPIC (Meyer and Kieras, 1997) in this respect, the architecture we propose
has no inherent, central cognitive bottleneck (although it can be structured, like our Tower
of London model, to have a single bottleneck if desired).
The first of these two properties of our implementation — linear combination — is a
difficulty when viewed from the perspective of a literal mapping of production systems
onto neural networks. Depending on the particular production system architecture involved
(i.e., whether rules are allowed to fire in parallel), the second one may be as well. These
differences serve as predictions of our proposed architecture that are distinct from those of
general production systems.
However, something quite like standard, Soar-style preference information can nevertheless
be encoded by connection strengths in a neural network. A straightforward method can
furthermore be used to assign connection strengths so that the outcome rankings are those
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desired by a programmer (or possibly learned by a learning algorithm, although we do not
model connection-strength learning here). In this way, we can always translate a set of
productions into a neural network that produces identical behavior by taking sufficiently
many steps to compensate for the disparities that arise from the linear combination of
preferences prior to ranking. However, one virtue of the mapping that we propose is that
it gives rise to emergent behaviors (behaviors not explicitly specified by the rule set) when
these compensating steps are not taken.
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