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The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative
forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial
determines a speed—accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of
human performance in speeded response tasks. However, little is known about how participants settle on
particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned
for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and
starting point parameters in free-response tasks that reward correct responses (R. Bogacz, E. Brown, J.
Moehlis, P. Holmes, & J. D. Cohen, 2006). These optimal values vary as a function of response—stimulus interval,
prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative
predictions regarding response time, accuracy, and response bias under these task manipulations and found that
grouped data conformed well to the predictions of an optimally parameterized DDM.
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When an organism extracts signals out of noisy inputs from the
environment, it faces a fundamental tradeoff: Should it spend more
time observing a stimulus to increase certainty about its identity
and the appropriate response to it, or should it act more quickly at
the cost of greater inaccuracy? Such a tradeoff between speed and
accuracy has long been recognized as a ubiquitous feature of
human behavior in speeded response tasks (Fitts, 1966; Garrett,
1922; Pachella & Pew, 1968; Schouten & Bekker, 1967; Wickel-
gren, 1977). However, the factors that lead to a particular tradeoff
are still not well understood.
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Clues about the nature of speed—accuracy tradeoff (SAT) selec-
tion have emerged from theoretical and behavioral research on
decision making in simple, two-alternative forced-choice (2AFC)
tasks, which require participants to choose one or the other alter-
native on every trial (e.g., Audley & Pike, 1965; Busemeyer &
Townsend, 1993; LaBerge, 1962; Laming, 1968; Link, 1975; Link
& Heath, 1975; Ratcliff, 1978; Smith & Vickers, 1989; Stone,
1960; Usher & McClelland, 2001; Vickers, 1970). Other clues
come from physiological research on the neural mechanisms that
may underlie this type of decision making (e.g., Carpenter &
Williams, 1995; Gold & Shadlen, 2002; Hanes & Schall, 1996;
Ratcliff, Cherian, & Segraves, 2003; Roitman & Shadlen, 2002;
Schall, 2001; Shadlen & Newsome, 2001; Smith & Ratcliff, 2004).
In particular, a large body of evidence (e.g., Palmer, Huk, &
Shadlen, 2005; Ratcliff & Rouder, 2000; Ratcliff, Thapar, Gomez,
& McKoon, 2004; Voss, Rothermund, & Voss, 2004) now
strongly suggests that decision making in 2AFC tasks can be
accurately described by the drift-diffusion model (DDM; Ratcliff,
1978), for which the SAT can be controlled by adjusting a single
parameter (the decision threshold parameter, described later).

In its simplest form, the DDM is simply an application of the
sequential probability ratio test (SPRT) to a decision-making task
(Stone, 1960). The SPRT (Wald, 1945) is the optimal algorithm for
two-alternative hypothesis testing when the likelihoods of data
samples under each hypothesis are known and stationary (constant
from trial to trial): on average, the SPRT will be fastest to reach a
decision for a given level of accuracy and most accurate for a
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given response time (RT), relative to any other procedure (Wald &
Wolfowitz, 1948).

In sequential sampling models (which include the SPRT as a
special case), evidence favoring each of the two alternatives is
added to any prior expectations by repeatedly sampling a given
stimulus. When the sampling happens continuously, the iterative
log-likelihood ratio computation of the SPRT is equivalent to a
drift-diffusion (DD) process (Feller, 1968), which we discuss in
the following section. If the task involves free responding, in
which participants can respond at any time after stimulus onset,
then the corresponding response is made when the evidence fa-
voring one alternative crosses a decision threshold. The choice of
threshold determines the SAT: Lower thresholds permit faster
responses but at the expense of less accumulation of information
and therefore less accurate performance; higher thresholds support
greater accuracy but at the expense of slower responding. The
choice of starting point determines the response bias: If the starting
point of evidence accumulation is closer to one response’s thresh-
old, then the probability of that response increases.

The drift parameter of the DDM is equivalent to the average rate
at which information accumulates. If drift is determined by the
logarithm of the stimulus likelihood ratios (and not modulated,
e.g., by strategic control processes), then the conditions of the
SPRT-optimality theorem apply, and no other model can make
decisions faster on average than the DDM for a given level of
accuracy. However, what level of accuracy—and therefore, which
point along the model’s SAT function—should be preferred? How
should prior beliefs be incorporated into the decision process?

The SPRT does not specify how to select a particular SAT (by
specifying a threshold value) or a particular response bias (by
specifying a starting point), and little is known about how human
participants do so. One possibility is that they seek to maximize the
number of correct responses per unit time, especially in fixed-
duration tasks in which faster responding leads to a greater total
number of trials. This is equivalent to maximizing the rate of
reward when correct responses earn rewards. Reward maximizing
behavior has long been used in signal detection theory to construct
receiver-operating characteristic curves (Tanner & Swets, 1954),
and the effectiveness and logical consistency of payoffs as feed-
back in human behavioral research in general have been recog-
nized at least since the 1960s (Edwards, 1961). Recent theoretical
work has demonstrated that, for any given set of task parameters, there
is a unique, optimal combination of threshold and starting point for
the DDM that will maximize the expected reward rate (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006). This result can be used to
make quantitative predictions about the way in which task factors
should influence SAT and response bias. In this study, we sought to
test these predictions and determine whether human participants ad-
just SATs and response biases to maximize reward rate.

Our study focuses on three factors in particular: the average
response—stimulus interval (RSI), which determines the pace of the
task, the prior probability of each of the two stimuli, and the
relative reward associated with correct responses to each stimulus.
Bogacz et al. (2006) examined the influence of these variables on
the optimal threshold and the optimal starting point of evidence
accumulation for the DDM. In the section that follows, we briefly
review this theoretical work and the behavioral predictions it
entails. We then describe three experiments conducted to test these
predictions. Their results provide new support for the DDM as a
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model of human decision-making performance in 2AFC tasks;
additionally, they support the hypothesis that human participants
adapt response thresholds and starting points to maximize rewards,
as predicted by a reward-rate-optimized DDM.

The DDM

We now briefly describe the DDM and the quantitative RT and
accuracy predictions that we test in our experiments.

A DD process is the limiting case of a random walk in which the
time between steps becomes vanishingly small (Feller, 1968). Tech-
nically, it is defined by the simple stochastic differential equation:

dx = A dt + ¢ dW. (1)

Here x represents the net evidence accumulated in favor of one
of the two alternatives (and —x evidence in favor of the other); the
drift A represents the discriminability of the stimulus favoring one
alternative (with —A favoring the other, assuming equal discrim-
inabilities); and ¢ weights the influence of a Wiener (Brownian
motion) process W, which represents the cumulative effect on x of
white noise in the stimulus' (see Figure 1). A sample path of the
process (i.e., a particular random walk trajectory) begins with x at
a specified starting point x,, which can be taken to represent the
decision maker’s prior belief about the relative likelihood of each
stimulus type. It ends when the value of x exceeds a threshold *
z in the positive or negative direction. This “first-passage” across
a threshold defines the decision time (DT) of the process. In fitting
to empirical data, an additional residual latency component 7,
(reflecting sensory and motor processes unrelated to the decision
itself) is added to DT to derive the predicted RT: RT = DT + T,

For the DDM with starting point equidistant from both thresh-
olds, expected DT (denoted DT) and the expected proportion of
errors (denoted ER) depend only on the signal-to-noise ratio
(SNR) A/c and the threshold-to-signal ratio z/A, as described by the
following analytic expressions (Busemeyer & Townsend, 1992; cf.
Bogacz et al., 2006 and Gardiner, 2004):?

— 1

ER = 1 + e(2AZJCZ)’ (2)
— Z Az
T= A tanh?. 3)

! Specifically, a Wiener process describes the idealized Brownian mo-
tion of a point particle moving in one dimension whose position (plotted on
the vertical axis in Figure 1) becomes more and more uncertain over time
as a result of continuous bombardment by upward and downward impulses
constituting a Gaussian white-noise process. Such a particle’s vertical
position is distributed normally with standard deviation ¢ \ﬁ, where 7 is the
amount of time elapsed since the start of the process (Gardiner, 2004). This
distribution therefore describes the process of diffusion in liquid of a
substance consisting of many such particles. As a description of evidence
integration, it also follows directly from the assumption of sequential
sampling from one of two Gaussian distributions with equal variance ¢?
and means equal to —A and A, respectively (Ratcliff, 1978); in the termi-
nology of signal detection theory, B = 0, and &’ = 2Ac (Green & Swets,
1966). Under this interpretation, x represents the logarithm of the odds ratio
that the signal comes from one or the other distribution.

2 When the starting point is not equidistant, as is optimal when one
stimulus is more likely than the other, ER and DT have more complicated
expressions that are given in Appendix B.
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Figure 1. Parameters, first-passage density, and sample path for the extended
drift-diffusion model (DDM). Parameters of the DDM are labeled according to the
terminology of Bogacz et al. (2006); see Appendix A for a translation into the
terminology of Ratcliff and colleagues (e.g., Ratcliff & Rouder, 1998). RT =
response time.

This allows quantitative predictions to be made about DT and ER
for a given drift A, noise level ¢, and threshold z. Drift and noise
reflect the influence of two primary factors: the intrinsic discrim-
inability of the stimulus in the environment and the signal-to-noise
properties of the internal processes responsible for transducing, en-
coding, and attending to the stimulus. The former can be experimen-
tally manipulated, and the latter is frequently assumed to be relatively
stable for motivated performance within a given task condition. Ac-
cordingly, A and ¢ can be estimated for a particular stimulus and
individual. What is less clear is the basis on which decision makers
choose the threshold z and the starting point x,—that is, how they
choose to trade off speed against accuracy and how they choose a
response bias, if any. We tested the hypothesis that participants make
decisions using a DD process and that they parameterize the process
so as to maximize reward rate, under the assumption of a physically
unavoidable upper bound on the SNR, A/c.

Reward-Rate Optimization of the DDM

Recent theoretical work (Bogacz et al., 2006) has shown that when
drift, noise, mean RSI (RSI), prior stimulus probability, and the
relative reward for correct responses to each stimulus are held con-
stant in a free-response 2AFC task, then there exist unique, optimal
threshold, and starting point values for the DDM? that maximize
expected reward rate (RR), defined as follows (Gold & Shadlen,
2002):

_— 1 - ER
R=E———"—"". “
DT + T, + RSI
Here we assume that errors are unrewarded. We now examine how
optimal DDM parameterizations (those that maximize Equation 4)
depend on the task conditions that we manipulate in our experiments.
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RSI. By substituting Equations 2 and 3 into Equation 4 and
solving for the maximum RR, we can derive the following equa-
tion describing the optimal value of z as a function of A, ¢, T, and
RSI (Bogacz et al., 2006):

24 [ .
P9 — | = = (RSI + Ty — %) (3)
(Here we assume that the starting point is equidistant between the two
thresholds—x, = 0—because this maximizes expected reward rate in
tasks with equally likely and equally rewarded stimuli.)

Because the left side of Equation 5 increases with z while the
right side decreases, there is a unique value of z that solves
Equation 5 for a given combination of A, ¢, T,, and RSI. This can
be seen clearly in Panel A of Figure 2, in which expected reward
rate (RR, given by Equation 4) is plotted as a function of threshold
for representative values of A, ¢, and T, (obtained by fitting the
DDM to behavioral data), and for a variety of average RSI values.
The figure shows that a unique, reward-rate-maximizing threshold
exists for each RSI and that this optimal threshold value grows as RSI
increases (the specific value can be determined by solving Equation 5
numerically, e.g., by Newton’s method). Insofar as A, ¢, T,,, and z are
stable for a given individual and task condition, their values can be
estimated from behavioral performance and used to evaluate the
goodness of fit of the DDM. Furthermore, if evidence suggests that A,
¢, and T, are stable for a given individual across manipulations of task
variables such as RSI, then changes in z can be estimated in response
to such task manipulations and compared with the optimal values
predicted by Equation 5. Panel B of Figure 2 plots optimal threshold
values as a function of RSI. Optimal threshold predictions in turn
entail specific expected reward rates, RTs, and accuracies that can be
compared with data (remaining panels of Figure 2). Experiment 1 was
designed to test these predictions.

Stimulus probability. Thus far, we have focused on conditions
in which each stimulus is presented equally often. If one stimulus
appears more often than the other, then maximization of reward
requires the starting point of evidence integration for the DDM (x,,)
to be moved closer to the threshold corresponding to the more
frequent response (Bogacz et al., 2006; cf. Edwards, 1965; &
Laming, 1968). This produces faster RTs when the drift is in the
direction of the closer threshold and more errors when the drift is
in the opposite direction. However, the reduced frequency of trials
for this case makes their increased inaccuracy worth the cost.
Specifically, if Il denotes the probability of stimuli for which
crossings of z are correct, then for optimal performance (Edwards,
1965), the initial condition of x should be set as

_ e IT
Xo = ﬂll’l ﬁ . (6)
Note that x,, should equal O when II = 1/2. In addition, a value of I1
greater than 0.5 produces a reduction in the optimal threshold value,

3 An analogous result holds in the case of equally likely and equally
rewarded stimuli for any model that produces a concave speed—accuracy
tradeoff function (SATF) relating accuracy to response time; see Appendix
C. See also related derivations of thresholds and starting points that
minimize a weighted sum of DT and accuracy rather than maximizing RR
(Edwards, 1965; Rapoport & Burkheimer, 1971).
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Optimal threshold as

Expected reward rate as a function of threshold a function of RSI

Maximum expected reward
rate as a function of RSI
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Figure 2. (A) Expected reward rate (ﬁ) plotted as a function of threshold z for a range of response-stimulus interval
(RSI) values (dashed curve connects the peaks of each RR curve). (B) Optimal threshold as a function of RSI. (C) RR as
a function of RSI, assuming optimal thresholds at each RSI. (D) Expected response time as a function of RSI, assuming
optimal thresholds. (E) Expected proportion of errors (ﬁ) as a function of RSI, assuming optimal thresholds. RT =

response time.

which in the case of unequal stimulus probability is obtained by
numerically solving the following equation (Bogacz et al., 2006):

2
e(ZAz/c~) —1=

— z IT
(RSI + TO_X) + (1 — 2I1)In (ﬁ)

CZ

(7

(Equation 7 reduces to Equation 5 for I1 = 1/2.) Expected accu-
racy and DT for the optimally parameterized DDM with I1 > 1/2
are given in Appendix B.

Although the optimal value of x, does not depend on RSI, it
interacts in interesting ways with the optimal threshold as the mean
RSI is changed. Figure 2 (second panel from left) shows that, as
RSI increases, the optimal threshold also increases. This relation-
ship also holds in the case of unequal stimulus frequencies. Thus,
decreasing the RSI while increasing the inequality in stimulus
probabilities effectively exaggerates the shift of the starting point
toward the threshold for the favored response (i.e., the response
corresponding to the more likely stimulus). For RSIs that are
sufficiently short and values of II that are sufficiently close to 1,
Equation 6 places the optimal starting point beyond the favored
response threshold. In this case, the simplest interpretation of the
theory predicts that the decision maker should forgo integration
and choose the favored response on every trial. Assuming that
there is a penalty for anticipatory responding (i.e., responding
before stimulus onset), RT should simply reflect signal detection
and therefore equal T, and the proportion of errors should equal
the probability of the less likely stimulus. We refer to this behavior
as nonintegrative responding to indicate that no integration of
evidence is being carried out by the decision maker; nonintegrative
responding is equivalent to making fast-guess responses (Ollman,
1966; Yellott, 1971), except that it involves always making the
same guess that the favored response is correct.

Bogacz et al. (2006) described task conditions in which nonin-
tegrative responding is expected by dividing the three-dimensional
task parameter space into two regions separated by a curved,

two-dimensional critical probability surface. This surface—on

which the optimal starting point and threshold coincide—is de-

fined by Equation 8, which describes it in terms of RSI as a

function of 11, A, ¢, and T

m-1/2 II

T + II In (71_1_[)
A%l?

RSI

= - T. (3)

This surface is depicted in Figure 3. The parameters defining
this space are the SNR (A/c), the average RSI, and the probability
of the more likely stimulus, II. The residual decision latency (7))
determines the height of the surface. For asymmetries IT above this
surface, nonintegrative responding is expected. For points below
the surface, integrative responding is expected.

It seems reasonable to expect that a sufficiently strong asym-
metry in stimulus ratios would lead participants to choose exclu-
sively one alternative in speeded-response, 2AFC tasks regardless
of other factors, such as RSI. However, Equation 8 prescribes a

Critical Probability
Surface

!

Predicted

Probability ( IT) . X
" . nonintegrative
of more likely stimulus
response
0.9 =09

0.8

07 I1=0.75

A/c, Signal-to-noise
ratio (SNR)

I1=0.6
m=05

0.6

Fitted
(subject-specific) ™
Ale

RSI (s)
Predicted integrative response

Figure 3. Critical probability surface, dividing parameter space into
predicted integrative and nonintegrative conditions.
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parametric and possibly counterintuitive relationship between
DDM parameters and task parameters that should produce nonin-
tegrative responding. In particular, this relationship implies that a
given prior probability II should produce nonintegrative respond-
ing for short RSIs but not for longer RSIs. Fits of the DDM
parameters (particularly, 7, and the ratio A/c) allow prediction of
the values of Il and RST at which this transition should occur if
reward rate is being maximized. In Experiment 2, we covaried
mean RSIs and stimulus ratios to determine whether such a surface
exists and, if so, whether its shape conforms to the predictions of
the DDM concerning reward rate maximization.

Relative reward. Because we assume that participants seek to
maximize reward rate, direct manipulations of the reward associ-
ated with each response should also produce predictable effects on
behavior. Bogacz et al. (2006) also investigated tasks in which a
proportion r of some unit of reward is assigned to one response
(when it is correct), and the remaining proportion 1 — ris assigned
to the other response when correct. In contrast to the case of
unequal stimulus probabilities, analytical expressions for optimal
starting points were not obtainable in the case of reward asymme-
tries. However, numerical results indicated that differences in
reward should produce effects similar to those of unequal stimulus
probabilities, except that values of r were predicted to produce
stronger response biases than those produced by equivalent values
of IT (in contrast to relative reward, the absolute magnitude of the
rewards was predicted to be irrelevant).

Specifically, two expressions were obtained that define an in-
terval within which the optimal starting point should lie. As the
sum of RSI and 7, grows small, Equation 9 defines the upper
boundary of this interval, which is the same as the optimal starting
point for unequal stimulus probabilities if II is replaced by r:

& r
Xo %ﬁln ﬁ . (9)
As the sum of RSI and 7, grows large, Equation 10 defines the
lower boundary of this interval:

& r
x0 —>ﬂln (ﬁ) (10)

The optimal starting point shift is thus smaller in the case of
reward asymmetry than in the case of an equivalent stimulus
probability (r = II). Optimal thresholds, in contrast, are dramati-
cally reduced in response to reward asymmetry relative to stimulus
proportion asymmetry. The net effect is that the optimal separation
between the starting point and the favored response threshold is
smaller in the case of reward asymmetry.

Thus, we should expect unequal rewards to bias decision makers
toward one response over the other in a manner qualitatively like
that predicted for unequal stimulus probabilities. Bogacz et al.
(2006) numerically computed a critical reward surface that is
analogous to the critical probability surface of Figure 3 but that
predicts a transition to nonintegrative responding at larger values
of RSI. Experiment 3 was designed to test this prediction.

Extended DDM and Data Fitting

The theoretical work described earlier has focused on the sim-
plest version of the DDM, in which the absolute value of the drift,
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the starting point, and the residual latency are all assumed to be
constant for a given participant and a given task condition. Here-
inafter, we refer to this version of the DDM as the pure DDM. The
pure DDM, like the SPRT itself, predicts equal mean RTs for
correct and error responses, but this prediction is frequently vio-
lated in practice and has led some to reject the SPRT as a decision-
making model (e.g., Luce, 1986). However, assuming random
variability across trials in A, x,, and 7|, corrects this deficiency
(Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999).
We refer to this form of the model (the pure DDM with three
additional parameters, s,, s,, and s, respectively, as well as a
fourth parameter, p,, specifying the proportion of contaminant RTs
uniformly distributed between the minimum and maximum RT, as
in Ratcliff & Tuerlinckx, 2002) as the extended DDM (depicted in
Figure 1). (Assuming that thresholds are set optimally, the pure-
DDMY/SPRT equivalence and the theorem of Wald and Wolfowitz
[1948] imply that rewards are maximized when s, s,, s,, and p,, are
all 0.)

The extended DDM fits a broader range of empirical data sets
(especially those with differences in average RT between correct
and error responses), but it has not yet been found to be amenable
to formal analysis (although see Bogacz et al., 2006, for analytical
approximations and numerical approaches). Thus, the extended
DDM does not yield explicit relationships such as those of Equa-
tions 5-7. Furthermore, although adding more parameters gives
the DDM enough flexibility to fit data, it also exacerbates a
problem that occurs during fitting: This is that fitted values of
DDM parameters are correlated with each other (Ratcliff & Tuer-
linckx, 2002). For example, when fitting data, a minimum fit error
parameter set can be modified by simultaneously increasing both
drift and threshold; this leads to a parameter set with larger values
that may nevertheless have a fit error nearly as low as the original;
reducing multiple parameters simultaneously can similarly result
in good fits. Thus, there is a tendency for parameter values to rise
and fall together during fitting. However, because variability pa-
rameters are equal to O in the pure DDM and cannot be less than
0 in the extended DDM (indeed, fitted values of these are almost
always greater than 0), these correlations among parameters appear
to explain why, in fits to our empirical data, the extended DDM
always results in larger drift, threshold, and 7, parameter values
than in fits of the pure DDM.*

The values of these parameters are critical for the numerical
accuracy of the predictions of Equations 5-7, but no widely
accepted method exists for controlling parameter inflation as pa-
rameters are added to the simpler, pure DDM. If fit error is the
only criterion on which parameter values are judged, then larger
values are acceptable. If a source of bias toward larger values

#To understand why this might happen, we have generated simulated
data sets using the DDM and then contaminated them by a small proportion
of RTs from other distributions. Although parameters can be recovered
accurately by extended-DDM fits to uncontaminated data, this is not
always the case when unmodeled contaminants are included (e.g., contam-
inants that are narrowly distributed rather than uniformly distributed be-
tween the minimum and maximum RT). In such cases, extended-DDM fits
tend to inflate the variability parameter estimates (making them greater
than 0) as well as the theory-critical drift, threshold, and residual latency
parameters. Thus, parameter inflation in fits to our empirical data may
result from the inclusion of unmodeled contaminants.
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exists, however, then techniques should be considered for limiting
the growth of parameters during fitting.

Our approach to the parameter-inflation phenomenon was to use
the extended DDM to fit data but to constrain its variability
parameters by applying upper bounds on their allowable values.
This approach left the pure-DDM parameters free to take on any
values (including those that would disconfirm our hypotheses)
while demonstrably reducing parameter inflation. Figure 4, for
example, demonstrates that drift and 7|, increased as upper bounds
on drift variability, starting point variability, and residual latency
variability were relaxed in fits to the data from Experiment 1
(standard error bars were generated in a cross-validation procedure
that involved fitting 150 subsets of half the data at each upper
bound value). Threshold values in the three RSI conditions, in
contrast, remained flat across bound values. Starting points (not
plotted), showed the same constancy. At the same time, fit error
naturally decreased as constraints were relaxed. Validation error,
computed by applying the fitted parameters in each fit to the
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unfitted half of the data, showed no signs of overfitting; that is, it
never increased as bounds were relaxed. However, failure to find
evidence of overfitting does not imply the absence of possible bias
in the fitting procedure.

Because we currently have no method for selecting an optimal
tradeoff between parameter inflation and fit error, we relied on
simulations to determine the best bound values. We set the bounds
in our data analyses (listed in Table 1) roughly equal to the
variability parameter values recovered in the most accurate fits of
A and T, to the simulated data sets of Ratcliff and Tuerlinckx
(2002) (see Figure 6 in that article). We relied on these extended
DDM simulations because they used parameter values that were
relatively close to those obtained by fits to our data and because
these values are representative of fits to data from a wide range of
experiments (e.g., Ratcliff & Rouder, 1998, 2000; Ratcliff &
Smith, 2004; Ratcliff et al., 1999). Also, because the simulated
data in the correlation analyses of Ratcliff and Tuerlinckx (2002)
assumed a constant value of 7, the bound on its corresponding
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Figure 4. Top panel: Average extended drift-diffusion model parameter values from fits to 150 subsets of half
the data (sampled with replacement) in each condition of Experiment 1, plotted as a function of the upper bound
applied to the s, and s, parameters during fitting (error bars represent the standard error of the mean). Drift A
and residual latency 7y, inflate as upper bounds on sy, s, and s, increase, indicating a possible source of bias in
parameter estimation. Bottom panel: chi-square fit error as a function of upper bound values. Average fit error
for the bound value closest to the bounds used in our analyses was approximately 200.
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Table 1

Fitted Parameter Values (Pooled Participant Data) for Group
Data From Response—Stimulus Interval (RSI) Conditions, With
Equally Likely Stimuli

Parameter Value Bound
Drift (A) 0.17348
Noise coefficient (c) 0.1
Drift SD (s,) 0.068683 0.08
Starting point range (s,) 0.03 0.03
T, range (s,) 0.1 0.10
Contaminant proportion (p,) 0.029182 0.05
Residual latency (7,) 345.47 ms*
Total x* fit error 194.5232
RSI condition 500 ms 1s 2s
Threshold (z) 0.0558 0.0606 0.0734
Optimal threshold 0.0438 0.0566 0.0730
Starting point (x,) 0.0029 0.0016 0.0016
Optimal starting point 0 0 0
X fit error 84.58 46.44 62.47

Note. Comparisons to empirical histograms for this fit appear in Figure 7,
and comparisons to empirical quantile-probability plots appear in Figure 6.
# Compare with average signal detection RT of 301 ms.

variability parameter, s,, came from our cross-validation proce-
dure. The bounds occur roughly halfway between an asymptotic
chi-square fit error of approximately 100 for completely uncon-
strained fits at the right edge of the graphs and a fit error of
approximately 300 for the maximally constrained model (which
better approximates the pure DDM) at the left edge. (The exact
placement of these bounds does not drastically affect the numerical
accuracy of our analytical predictions of optimal parameter values
until it results in drift values well above 0.2 and 7|, values well
above 370 ms, at which point predictions and fitted values match
only qualitatively.)

The result was a model that could be fit much faster than the
pure DDM. Resulting fit errors were small enough for the model
to pass an Akaike information criterion test for model selection
(Akaike, 1974) over the pure DDM, but fitted values of the
theory-critical A and T, parameters were nevertheless close to
those obtained by fitting the pure DDM. We used the resulting
estimates of A and 7, to make predictions about the effects of RSI
on threshold setting in Experiment 1, the interaction of RSI with
stimulus probabilities in Experiment 2, and the effect of unequal
rewards for left and right responses in Experiment 3.

Experiment 1

In this experiment, we held the SNR of the stimulus constant
and manipulated the mean RSI across blocks of trials in a free-
response, 2AFC motion discrimination task with equally likely
stimuli (i.e., I = 0.5). We sought to test the hypothesis that
participants’ SATs shift across conditions in the absence of ex-
plicit instructions. We also sought to determine whether the ex-
tended DDM could account for RT distributions and accuracy in
all conditions and whether fitting the model to data would produce
parameter estimates that conform to the following predictions of
the pure DDM,? parameterized to maximize reward rate (Bogacz et
al., 2006):
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Prediction 1a: Estimates of drift (A) should be constant across
all RSI conditions, reflecting the assumption that participants
are motivated and allocate maximum attention to the task and
further reflecting the fact that the optimal strategy is to extract
as much information as possible from the stimulus (which has
a fixed SNR) in all task conditions.

Prediction 1b: Estimates of residual latency (7}) should be
constant across conditions and commensurate with an inde-
pendently observed signal detection RT (in a signal detection
task with easily detectable signals).

Prediction 1c: Estimates of the starting point x,, should be 0 in
all conditions, reflecting no predisposition toward either re-
sponse.

Prediction 1d: Estimates of the threshold parameter (z) should
increase as RSI increases, reflecting a shift toward accuracy
(see Figure 2, Panel B).

Prediction le: Estimates of the threshold parameter should
equal the function z (A, ¢, T,,, RSI) defined implicitly by
Equation 5, evaluated at the current RSI, and with the fitted
values of A/c and T,

Method

Participants. Twelve participants, ranging in age from 19 to
64 years (M = 26), were recruited from the Princeton University
campus area to participate in ten 1-hr task sessions. Experiment 1
consisted of the first five sessions; the second five sessions con-
stituted Experiment 2. For their performance, participants were
paid the greater of $10 or their total earnings in the task. Partici-
pants earned 1 cent for each correct response given, and no explicit
penalties were imposed for errors. Average earnings were around
$15 per session.

One participant performed at chance in all sessions, and these
data were discarded. One participant dropped out after a single
session. Data from two sessions were corrupted by power failures
for a third participant, and this participant’s remaining data were
excluded from analysis. Another participant did not comply with
instructions and did not wear vision-correcting glasses during
some sessions, so these data were excluded as well. Finally, an
older participant’s data were excluded (reducing the average age to
23 and the maximum age to 27) so that age-related performance
changes would not affect our findings. Data were therefore ana-
lyzed for 7 participants who completed the 10 sessions. Data for
each participant were analyzed only for the last 7 of 10 sessions to
reduce the impact of practice effects on the analysis.

Apparatus and stimuli. Stimuli were presented on a standard
computer monitor; button press responses were entered on a stan-
dard keyboard. Stimulus display and response collection were
conducted with the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997) extensions to MATLAB running on an Apple G4 Power

5 These predictions are approximately the same for the extended DDM,
but the approximation is worse for larger values of the variability param-
eters (s4, S,, and s,) in the extended DDM.
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Mac with the OS 9 operating system. Stimulus generation software
was created for use with the Psychophysics Toolbox by J. I. Gold.

Stimuli were random-dot kinematograms, similar to those used in
a series of psychophysical and decision-making experiments involv-
ing monkeys as participants (e.g., Britten, Shadlen, Newsome, &
Movshon, 1992; Gold & Shadlen, 2001; Shadlen & Newsome, 2001).
Stimuli consisted of an aperture of approximately 3-in. (7.62-cm)
diameter viewed from approximately 2 feet (~0.610 m; approxi-
mately 8° visual angle) in which white dots (2 X 2 pixels) moved on
a black background. A subset of dots moved coherently either to the
left or to the right on each trial, and the remainder of dots were
distractors that jumped randomly from frame to frame of the display.
Motion coherence was defined as the percentage of coherently mov-
ing dots. Dot density was 17 dots per square degree, selected so that
individual dots could not easily be tracked.

Procedure. Motion coherence was adapted manually at the
end of each of the first three experimental sessions to produce
errors in at least 10% of responses. This was done to produce a
substantial sample of error RTs, which is useful for constraining
fits of the DDM (Ratcliff & Tuerlinckx, 2002). Some participants
required no coherence adaptation, and average motion coherence
ranged from the default value of 10% to a lower limit of 5%. No
participants required an increase in motion coherence (except for
the participant who performed consistently at chance and whose
data was excluded from analysis).

Responses involved presses of the Z key on the lower left of the
keyboard with the left index finger to signal perception of leftward
motion and presses of the M key on the lower right with the right
index finger to signal perception of rightward motion, as in the
empirical work presented in Bogacz et al. (2006) and Bogacz, Hu,
Cohen, and Holmes (in press). Correct responses were signaled by an
auditory beep, and after every five trials, the current total of correct
responses was displayed in the center of the screen in place of the
motion aperture for a duration equal on average to the mean RSI
duration in each block of trials. Errors were indicated by the absence
of the auditory beep.

Two measures were taken to prevent anticipatory responses, in
which participants do not integrate stimulus information but instead
prepare a response before stimulus onset to reduce RT and thereby
increase the total opportunity for reward.® First, the RSI on a given
trial was selected from a normal distribution with a standard deviation
of 100 ms to make stimulus onset unpredictable. Second, whenever
responses were recorded before or within 100 ms after the stimulus
onset, a penalty delay of 4 s was imposed to reduce the opportunity to
earn rewards, and a buzzing error tone was presented.

In the first five 1-hr task sessions, the two stimulus types were
equally likely. Each session consisted of one practice block of 4
min (practice was reduced to 2 min in Sessions 4 and 5), followed
by twelve 4-min blocks within each of which RSI was held

constant. RSIwas 500 ms in three blocks, 1 s in three blocks, and
2 s in six blocks. There were twice the number of 2-s RSI blocks,
as these produced a significantly smaller number of trials within a
4-min block. The order of blocks and conditions was counterbal-
anced across sessions and across participants with a Latin square
design. Self-paced rest periods occurred between blocks.
Participants were informed that the RSI might be different in
different blocks and that blocks would always last 4 min; therefore,
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faster responding would lead to more trials overall. They were
encouraged to earn as much money as possible.

The 12 blocks in each session were followed by two 2-min blocks
of a signal detection task with easily detectable stimuli. In each signal
detection block, stimuli were the same as in previous blocks (with a
mean RSI of 500 ms), but only a single response earned rewards (a
left button press in one block, and a right button press in the other). In
these blocks, participants were instructed to respond as quickly as
possible with the designated button press as soon as the stimulus
appeared, regardless of coherent motion direction. Although discrim-
inating motion direction was relatively difficult in the preceding
2AFC blocks, simply detecting the presence of a high-luminance,
moving-dots stimulus was not—signal detection RT was rapid and
narrowly distributed; no misses occurred, and false alarms (anticipa-
tions) were rare. These blocks were used to establish a minimum
signal detection RT for each response (left finger and right) that could
be compared as a baseline with estimates of 7, from the signal
discrimination trials, as well as with the RTs of any potentially
nonintegrative responses in Experiments 2 and 3.

Analysis. We directly examined RT distributions to assess the
magnitude of SAT adjustment across RSI conditions and com-
pared observations to speed and accuracy predictions based on
model fits of the DDM and on the theory of optimal threshold
parameterization in Equation 5.

To maximize statistical power and assess the generality of
findings, we focused our analysis on group averaged data (while
noting that similar results hold for almost all individual partici-
pants; individual performance for a selected participant is exam-
ined in Appendix E). Although pooling raw data from multiple
participants presents potential dangers for interpretation (Estes &
Maddox, 2005; Ratcliff, 1979), group RT distributions have been
shown to be useful for analysis of RT data from multiple partici-
pants (Ratcliff, 1979), and they have been used successfully in
practice (Spieler, Balota, & Faust, 1996; Ratcliff et al., 2004).

We assessed group performance by pooling together the data
from all participants. Frequently, a Vincentizing procedure is used
to construct group RT distributions from individual RT distribu-
tions (Ratcliff, 1979; Van Zandt, 2000). This involves averaging
(or taking the median of) the quantiles of individual RT distribu-
tions to derive the quantiles of an estimated RT distribution for the
“average” participant. One virtue of this approach is that a set of
unimodal, individual distributions cannot lead to a multimodal
“average” distribution (which clearly would not represent the
typical participant), although some evidence suggests that this
approach has drawbacks (Rouder & Speckman, 2004). In our case,
however, the Vincentized distribution appeared nearly identical to
the distribution of RTs obtained simply by pooling the raw data
from multiple participants (possibly because our manipulations of

¢ In a pilot experiment in which RSIs were completely predictable, antici-
patory responding was produced by most participants in all conditions, regard-
less of RSI, as evidenced by RTs of as little as 25 ms. This pattern of behavior
is consistent with a strategy of maximizing reward rate by effectively reducing
the residual latency 7\,—indeed, it produced much higher reward rates than
those observed in Experiment 1. However, it precludes any study of the effects
of reward on integration processes in decision making, whereas the theory
discussed in Bogacz et al. (2006) applies when overall rates of stimulus
presentation are predictable but individual stimulus onsets are unpredictable
and anticipatory responding is not beneficial.
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motion coherence in the first three sessions to obtain at least 10%
errors tended to equalize RT and accuracy among participants).
We therefore conducted the analyses that follow by pooling un-
transformed RT data from multiple participants; the analysis of
Vincentized data leads to nearly identical results.

Results

Although 5 of 7 participants displayed clear evidence of SAT
adaptation across RSI conditions by the fifth session of Experi-
ment 1, 2 participants did not. However, data from these partici-
pants were not excluded from the pooled data analysis, and these
participants did show evidence of SAT adaptation in Experiment 2.

Differences in SAT across RSI conditions. A boxplot of RT
data across three conditions in Figure 5 (left panel) shows that RTs
for the average participant increased as RSI increased. All pairwise
median RT differences were significant (p < .05, Wilcoxon rank-
sum test). Notches in the boxes in Figure 5 represent nonparamet-
ric 95% confidence intervals around the median, which is denoted
by the horizontal line in each box. The observed average RTs are
indicated with circle markers and superimposed on these plots, and
the corresponding predictions based on optimal threshold values
and fitted values of A and T, are shown with Xs. (Note that the
mismatch between predictions and observations in Figure 5 cannot
derive entirely from suboptimal threshold selection, which would
lead to longer RTs and greater accuracy, or shorter RTs and lower
accuracy, than predicted. Instead, the estimates of A and 7|, must
be somewhat noisy, as RTs are longer than predicted and accuracy
is lower than predicted in the 1- and 2-s RSI conditions.)
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Accuracy also increased as RSI increased, as shown in the
center panel of Figure 5. Error bars indicating the standard error of
the mean are barely visible; differences in error proportions were
highly significant. These results are consistent with an increase in
threshold as RSI increases, in accord with Prediction 1d.

A predicted SATF (see Footnote 3) is shown in the right panel of
Figure 5, where accuracy is plotted as a function of RT. The solid
SATF curve is generated by holding all DDM parameters constant
while gradually increasing thresholds. Observed RT-accuracy pairs
are marked with circles; predictions for SATs in corresponding RSI
conditions are marked with Xs.

Quantile probability plots. Quantile probability plots (Ratcliff,
2001) provide a compact form of representation for RT and accu-
racy data across multiple conditions. In a quantile probability plot
(e.g., Figure 6), quantiles of a distribution of RTs of a particular
type (e.g., correct responses) are plotted as a function of the
proportion of responses of that type: Thus, a vertical column of N
markers would be centered above the position 0.8 if N quantiles
were computed from the correct RTs in a task condition in which
accuracy was 80%. (Following Ratcliff and Tuerlinckx [2002] in
both plotting and model-fitting, we used five RT quantiles: 0.1,
0.3, 0.5, 0.7, and 0.9.) The ith quantile in each distribution is then
connected by a line to the ith quantiles of other distributions.

Here we have further elaborated quantile probability plots to in-
clude a superimposed scatterplot of individual RTs in each condition.
Each sample point is plotted at a vertical coordinate corresponding to
its RT value, and at a horizontal coordinate corresponding to the
response probability, plus a normally distributed, random offset (lat-
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Figure 5. (A) Boxplot of response times (RTs) for pooled data for all participants. Boxes represent the interquartile

range (difference between first and third quartiles), and lines bisecting the boxes represent medians. Notches represent
nonparametric 95% confidence intervals around the median RTs. Dashed lines and X markers indicate the expected
RT predicted by Equation 3 for a drift-diffusion model (DDM) with optimal thresholds, given values of A and Ty,
obtained from the best fit of the model to the data. Solid lines and circle markers indicate observed RT averages (these
are higher than the medians indicated in the boxplots because of the skew of the RT distributions). (B) Accuracy
across conditions. Solid lines and circles indicate the observed proportions of correct responses. Dashed lines and Xs
indicate the expected proportions, 1 — ER, where ER in each condition is obtained by substituting fitted A and 7,
values along with the optimal z value into Equation 2. (C) Predicted speed-accuracy tradeoff function (SATF; i.e., 1 —
ER as a function of DT + T) based on a fit of the DDM. Circles indicate the observed tradeoffs in each condition;
Xs indicate the optimal tradeoffs. RSI = response—stimulus interval.



1874

1.8

2-s RSI

121

Response time

0.8

SIMEN ET AL.

0.6

0.4

Probability of response

Figure 6. Quantile probability plot for pooled data from all participants in Experiment 1. Solid lines connect the nth
quantile of the empirical data; Xs and dashed lines represent the predicted quantiles for the best fit (listed in Table 1). RSI =

response—stimulus interval.

erally scattering individual RTs so that they can be discerned). This
adds a visual representation of the number of responses in each
condition to a quantile probability plot. Correct response RTs are
plotted in green; error RTs are plotted in red.

In Figure 6, the quantile probability plot for the pooled participant
data is shown for the fourth and fifth sessions together. The five lines
correspond to the five RT quantiles that were computed. The six RT
distributions depicted in the plot correspond to correct and error RTs
in each of the three different RSI conditions: 500 ms, 1 s, and 2 s.
Performance was much better than chance in all conditions, so the
correct RT distributions appear on the right side of the plot.

For the average participant (represented by the pooled data),
blocks with longer RSIs were associated with a higher likelihood
of a correct response, as accuracy increased with increasing RSI.
(This pattern also held for all but 2 of the participants individu-
ally.) Thus, the correct responses for the 2-s RSI condition appear
as the rightmost column of quantiles. The error responses in this
condition form the leftmost column.

Figure 6 clearly shows that the more likely correct responses
coincided with longer RTs. Similarly, the corresponding error RTs
were longer for the less likely errors. Thus, a tradeoff between
speed and accuracy is depicted in the U-shaped plot. In fact, the
data are consistent with the theory of optimal DDM parameteriza-
tion and SAT adaptation: Blocks with longer RSIs were associated
with more accurate but slower responses. In contrast, when
changes in the drift parameter produce changes in accuracy, speed
and accuracy do not trade off against each other; instead, RT and
accuracy are negatively correlated. The resulting quantile proba-
bility plot in that case has an inverted-U shape, as in Ratcliff and
Tuerlinckx (2002), where variations in drift, but not threshold,
were simulated. This pattern of increasing RT as RSI increased

was observed in all but 2 participants. The results for the average
participant are thus, so far, consistent with threshold adaptation but
not with drift adaptation.

There is also no significant difference between the median
correct RT and the median error RT in the 500-ms (p = .3239,
Wilcoxon rank-sum test) and 1-s (p = .28) RSI conditions, al-
though there is a trend in which average error RT is slower than
average correct RT by about 30 ms. Data from these conditions are
therefore arguably consistent with the pure DDM. Average error
RTs are significantly slower, by about 50 ms, in the 2-s RSI
condition (medians are significantly different at p = .0192); data
from this condition are therefore inconsistent with the pure DDM.

Model fits. We fit RT distributions using a constrained opti-
mization algorithm implemented in MATLAB’s fmincon.m func-
tion. Appendix D details the model-fitting procedure, but we note
here that researchers often use an unconstrained Simplex algorithm
(Nelder & Mead, 1965) to fit the DDM to data (e.g., Ratcliff &
McKoon, 2008). In contrast, constrained optimization approaches
allow a user to restrict parameter values with equality and inequal-
ity constraints, including bounding parameters above or below by
a constant. As we noted previously, we restricted the extended
DDM’s additional variability parameters by bounding them above.
Table 1 lists the bounds we used during fitting. We examined a
range of upper bound values and found that fitted A and 7|, values
bottomed out at values near those obtained from a pure DDM fit as
the bounds were reduced to the following: 0.04 for s_, 0.03 for s,,,
and 0.08 for s,. As previously discussed, we chose the bounds in
Table 1 (0.03, 0.08, and 0.1, respectively, as well as 0.05 for
contaminant proportion x,) because they appeared to be the vari-
ability parameter values that were recovered in the most accurate
fits of A and T, in the simulated data sets of Ratcliff and Tuer-
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linckx (2002; see Figure 6 in that article) and because their
simulations used pure DDM parameter values close to those ob-
tained by fits to our data.

Table 1 lists parameter values from a fit to the group data.
Following the practice of Ratcliff and colleagues, we set the value
of the noise parameter ¢ to 0.1 (c is a “scaling parameter,” meaning
that multiplying this term by any factor k will produce identical fits
by multiplying the other DDM parameters by k—thus, the actual
value of ¢ is irrelevant; Ratcliff & Tuerlinckx, 2002). In these
simultaneous fits to data from each RSI condition, all parameters
other than threshold and starting point were constrained to be equal
across RSI conditions. This is consistent with the notion that drift
is constant when the DDM is parameterized optimally, and it
maximizes the power of the analysis to see changes in threshold.
At the same time, it leaves open the possibility that starting points
will violate the prediction of being equidistant from the two
thresholds. (Furthermore, a separate parametric bootstrap analysis
with unconstrained fits showed no significant differences between
any parameters other than threshold across conditions.)

Figure 7 shows a graphical comparison between histograms of
the empirical data and the appropriately scaled RT densities cor-
responding to this model fit, separately for correct and error
responses (top and bottom rows of plots, respectively). Visually,
the match is close. However, model-data mismatches are more
visible in quantile probability plots than in density plots, so we
superimpose fitted quantile probability plots (X markers) on the
empirical plots in Figure 6. Visually, the match in Figure 6 is also
close, except in the case of the 500-ms RSI condition, where

0.5-s RSI Correct: Resp Prob 0.831

1-s RSI Correct: Resp Prob 0.861
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accuracy is slightly overestimated and the 0.9-quantile RT is
significantly underestimated, and in the last two error quantiles for
the 1-s RSI condition, where RT is underestimated. These short-
comings can be rectified by leaving the extended DDM’s variability
parameters completely unconstrained, but this comes at the cost of
inflated drift and 7, estimates. Fit error can be further reduced by
allowing all parameters to vary, but this comes at the cost of weak-
ening the power to detect threshold changes across conditions.

Quantitatively, the extended DDM’s variability parameters con-
tributed to a large reduction in fit error relative to pure DDM fits
(pure DDM fits, which are not listed here, had chi-square fit errors
on the order of 1,800, compared with 195 for the constrained,
extended DDM). However, these variability parameters were not
so obviously large as to rule out application of the optimality
theory developed for the pure DDM. To confirm this, we simulated
the extended DDM with the fitted parameter values and a range of
threshold values to numerically estimate the expected reward rate
as a function of threshold. This approximation (plotted as shown
later in Figure 10) was close to the function predicted analytically
by the pure DDM, with optimal thresholds appearing to be gen-
erally smaller than the optimal thresholds for the pure DDM (peaks
of the extended DDM’s simulated reward rate function are to the
left of the peaks of the pure DDM’s analytical reward rate func-
tion). We discuss this figure in more detail when we compare fitted
thresholds to optimal values for the pure DDM later.

Confidence intervals for parameter estimates. To conduct hy-
pothesis tests regarding the adaptation of model parameters across
task conditions, we used the parametric bootstrap method (Efron &

2-s RSI Correct: Resp Prob 0.895
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Figure 7.  Group response time (RT) histograms and predicted RT densities from a fit of the drift-diffusion model (DDM),
Sessions 45, Experiment 1. Columns correspond to distinct response—stimulus interval (RSI) conditions. The top row
shows RT distributions for correct responses, and the bottom row shows the distributions of error RTs. Vertical lines indicate
average RTs in each condition, computed separately for errors and corrects. Histogram bin widths were the same in both
the correct and error plots for each RSI and were determined by the Freedman—Diaconis rule (described in Appendix D).

Resp Prob = response probability.
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Tibshirani, 1993) to construct confidence intervals around the
fitted parameter values in each condition.

To test whether thresholds were adapted across conditions, and to
determine whether other parameter adaptations were not the primary
contributors to SAT adaptation, we generated 300 bootstrap samples
of simulated RTs for the parameters obtained by fitting the extended
DDM to the pooled RT data. Simulated RTs were generated with the
probability integral transform method discussed in Tuerlinckx, Maris,
Ratcliff, and De Boeck (2001) and computed in MATLAB with the
cumulative RT distribution function CDFDif.m from the Tuerlinckx
(2004) study. We then fit each simulated data set and computed
nonparametric 95% confidence intervals around the median of the
parameter estimates to test the statistical significance of parameter
adaptations across RSI conditions.

Figure 8 shows superimposed histograms for the three different
threshold estimates. The leftmost histogram corresponds to the
500-ms condition; the middle histogram to the 1-s RSI condition; and
the rightmost histogram to the 2-s RSI condition. Whisker-bars plot-
ted at the top of the tallest histogram bins denote 95% percentile
confidence intervals for each parameter estimate. They indicate sig-
nificant differences in the parameter estimates across conditions.

Thresholds and starting points were the only parameters that
were allowed to range freely across RSI conditions in this boot-
strap analysis. In other fits to group data that allowed all extended-
DDM parameters to range freely, only the threshold parameters
showed any significant differences across conditions. In contrast,
fits to data from some individual participants did appear to show
an increase in drift with increasing RSI. Such an increase in drift
is inconsistent with prediction la. Whether this increase in esti-
mated drift was simply due to correlations between drift, threshold,
and residual latency (which showed an increasing trend as RSI
increased in individual fits), or whether the SNR for the individual
participants concerned actually increased when RSI was longer, is
an open question. However, no participants displayed an
inverted-U shape in their quantile probability plots and most
clearly displayed a U shape. This suggests that, at minimum,
thresholds were increasing simultaneously with adaptations in drift
across RSI conditions. Fits to individual performance for some
participants also suggested that 7, may have increased as RSI
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Figure 8. Parametric bootstrap estimates of threshold z, showing significant
differences in threshold across conditions. Horizontal whisker lines denote 95%
bootstrap confidence intervals around the median threshold value. RSI =
response—stimulus interval.
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increased. This increase violates Prediction 1b, but again, this may
be an artifact of parameter correlations. There is no evidence of T,
adaptation for the average participant.

Proximity of fitted thresholds to optimal values. Figure 9
shows fitted thresholds plotted as a function of the optimal thresh-
olds for each condition. Optimal values were computed by numer-
ically solving Equation 5 after substituting fitted drift and residual
latency parameters. The best approximation to the optimal thresh-
old occurred in the 2-s RSI condition (the optimal value was within
the 95% confidence interval obtained by the parametric bootstrap
analysis). The approximation was worse in the 1-s RSI condition
and was quite far off in the 500-ms RSI condition. In the latter two
cases, thresholds were suboptimally large. This is consistent with
previous observations in the literature, which have been interpreted
as reflecting an emphasis on accuracy over speed that results in a
failure to maximize reward (Maddox & Bohil, 1998).

As we relaxed the upper bounds on the extended DDM’s vari-
ability parameters during fitting, the fitted values of A and T,
inflated. Substituting these inflated values into Equation 5 led to
decreased values of the predicted optimal threshold, causing fitted
thresholds to appear much larger than optimal. It is possible,
however, that if participants implement the DDM but cannot
control variability in starting point, drift, and 7, then they may
still be able to set thresholds to nearly optimal values for the
extended DDM. These values might then only appear to be sub-
optimal according to an analysis based on Equation 5.

Analytical expressions for reward rate as a function of threshold
do not exist for the extended DDM, so we tested this hypothesis by
numerically simulating the extended DDM with the parameters
from Table 1. The resulting reward rate curves are close to the
analytical curves for the pure DDM but appear to have even
smaller optimal thresholds (we also did this for a completely
unconstrained fit of the extended DDM; results shown in Fig. F1
of Appendix F demonstrate a larger mismatch between fitted and
optimal thresholds). The match between simulations of the con-
strained, extended DDM and analytical results suggests that pre-
dictions based on the pure DDM are likely to be useful in practice
even if there is some variability in parameters that the pure DDM
assumes to be constant.

Figure 10 shows these simulation-based curves along with the
analytical reward rate curves for the pure DDM, and it illustrates
the efficiency of reward gathering in the different RSI conditions
of Experiment 1. Participants were able to achieve 97% of the
maximum reward rate in the 500-ms RSI condition, 99% of the
maximum in the 1-s RSI condition, and 99.9% in the 2-s RSI
condition. Because relative reward harvesting efficiency increases
as RSI increases, we speculate that performance might be even
closer to optimal with longer RSIs (a 4-s RSI curve is plotted in
Figure 10 for comparison).

Figure 10 also shows the effect of anticipations. The fitted thresh-
old and the reward rate earned in each condition are marked with Xs.
Blue Xs are based on summing up all rewards and dividing by the
duration of blocks of trials. This duration may also include a number
of 4-s penalty delays incurred for anticipatory responses. The DDM
predictions of Equation 4 do not incorporate these delays, however, so
we subtracted the total penalty duration from the block duration in
each condition to get a corrected, earned reward rate estimate for
comparison with the DDM predictions; these estimates are plotted
with red Xs. The differences between the blue and red Xs in each
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Figure 9. Plot of fitted thresholds versus optimal thresholds. Vertical
crossbars indicate 95% confidence intervals around the fitted threshold
values plotted as Xs. RSI = response—stimulus interval.

condition, therefore, indicate the proportion of anticipations in each
condition, and they demonstrate that the frequency of anticipations
decreased dramatically as RSI increased.

Discussion

Consistent with the predictions of an optimally tuned DDM, fits
to pooled data from all participants (and to data from individual
participants) suggest that threshold values increased with RSI
across blocks (Prediction 1d) and that starting points remained
equidistant from both thresholds (Prediction 1c). In the case of
pooled data, no other parameters were seen to covary with mean
RSI (Predictions la and 1b). An SAT function relating expected
RT and accuracy is also determined by the drift parameter of the
DDM, and this function was approximated by the observed SATs
in the three RSI conditions. However, both individual participants
and the average participant represented by pooled data appeared to
set thresholds at values higher than optimal in two of the RSI
conditions (violating Prediction le).

A possible explanation for suboptimally high thresholds and the
suboptimally high accuracy that results is that participants may
derive intrinsic value from accuracy itself (Maddox & Bohil,
1998). Another possible explanation for a propensity toward sub-
optimally high thresholds was proposed in Bogacz et al. (2006).
There it was argued that if errors in threshold selection were to
occur, then it would be better to err toward higher rather than lower
thresholds. This argument derives from the skewed shape of the
curve defining reward rate as a function of threshold (see Figures
2A and 10). This skew implies that reward rate decreases more
rapidly as thresholds become suboptimally small than they do as
thresholds become suboptimally large.

The proportion of anticipatory responses in each RSI condition
suggests a third possibility: that participants may need to set
thresholds higher than the optimum in conditions where anticipa-
tions are more likely. It may be that anticipation becomes a
prepotent behavior at high response rates (which, e.g., are much
higher in the 500-ms RSI condition than the 2-s RSI condition). If
so, then setting thresholds artificially high may reduce the likeli-
hood of anticipation by slowing the response rate, and the need for
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this slowing should decrease as RSI increases. Consistent with this
explanation—or at least with a general impairment of strategic con-
trol at short RSIs—several researchers have found that RTs increase
and accuracy decreases as RSI decreases below 500 ms (Jentzsch &
Dudschig, 2009; Sommer, Leuthold, & Soetens, 1999).

Another curious aspect of the data is that the reward rate curves
plotted as a function of threshold in Figure 10 flatten as the RSI
increases. Under simple hill-climbing strategies for optimizing thresh-
olds (e.g., Myung & Busemeyer, 1989), this flatness would suggest
that deviations from optimal thresholds should be larger as RSIs
increase. However, it may be that the amount of reward earned as a
proportion of the total possible is the quantity that determines perfor-
mance (e.g., such proportional judgments have often been proposed to
underlie Weber’s law for just-noticeable differences in perceptual
judgments). If such ratios are what determine performance, then
absolute amounts of reward (and flatter maxima of reward rate curves
for longer RSIs) are irrelevant. These two factors together—
proportional reward rate estimation and performance degradation with
increasing task pace— constitute a possible explanation for improve-
ments in performance as RSIs increase.

A fourth possibility is that reward simply does not have as
strong an effect as predicted on behavior. It is important to note,
however, that the theory of optimal DDM parameterization also
predicts dramatic, qualitative changes in behavior in the case of
unequally likely stimuli and unequally rewarded responses that
result from optimal threshold and starting point shifts. Observing
behavior consistent with these predictions would bolster the case
for strategic threshold adaptation in Experiment 1. We assess these
predictions in Experiments 2 and 3.

Experiment 2

In decision-making tasks involving multiple trials, stimulus
ratios provide potentially useful information to the decision maker.
When stimuli are unequally likely, a decision maker can exploit
estimates of prior probability to improve earnings by favoring the
response to the more frequent stimulus (we refer to this response
as the favored response and the more likely stimulus as the favored
stimulus). Optimizing the pure DDM produces precise, quantita-
tive predictions about how the decision maker should respond to
changes in stimulus probabilities (Il and 1 — II) when stimulus
discriminability is held constant. The first two of these predictions
are identical to those in Experiment 1, and the remainder are
modified to account for unequal stimulus probabilities:

Prediction 2a: Estimates of drift (A) should be constant across
all stimulus—probability and RSI conditions.

Prediction 2b: Estimates of residual latency (T,) should be
constant across conditions.

Prediction 2c: Estimates of the starting point x,, should be shifted
toward the favored response threshold as specified by Equation 6,
reflecting a bias toward the favored response; the size of the optimal
starting-point shift should be independent of the mean RSIL.

Prediction 2d: As in Experiment 1, estimates of the threshold
parameter (z) should increase as RSI increases, reflecting a
shift of the SAT toward greater accuracy; threshold magni-
tudes in this case should equal the function z(A, ¢, T, RSI, IT)
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Figure 10. Reward harvesting efficiency of participants in three response—stimulus interval (RSI) conditions.
One solid reward-rate curve per RSI condition represents the analytical expected reward rate for the pure
drift-diffusion model (DDM) with the A and 7|, values listed in Table 1 and with extended-DDM variability
parameters set to 0. Dashed reward-rate curves show the numerical average reward rate for the extended DDM
with the nonzero variability parameters listed in Table 1, simulated 10,000 times at 16 different threshold values.
Green vertical lines bound intervals within which a threshold setting is expected to produce 99.9% of the
maximum reward; blue lines bound 99% intervals, and magenta lines bound 97% intervals. Superimposed on
these plots are blue Xs denoting the fitted threshold in each condition and the observed rate of reward in each
condition (total of rewards divided by total duration). Red Xs correct for the penalty delays incurred by
anticipatory responding, illustrating the larger proportion of anticipations in conditions with a shorter mean RSI.

defined implicitly by Equation 7, evaluated at the current
values of RSI and II and the fitted values of A, ¢, and T,

Prediction 2e: Estimates of the threshold parameter (z) should de-
crease according to Equation 7 as II increases; as shown numeri-
cally in Bogacz et al. (2006), the optimal threshold decrease should
be smaller than the optimal starting-point shift.

Expected reward rate for the pure DDM in Experiment 2 is thus
maximized by shifting the starting point of evidence integration
(%) in the direction of the favored response threshold, by slightly
reducing both thresholds, and by leaving drift to be determined
entirely by the stimulus. (In contrast, for the extended DDM, it is
possible that strategically adapting the mean drift value along with
thresholds and starting points across conditions could maximize
the expected reward rate.)

A particularly strong prediction of the optimally parameterized
DDM is that, for particular combinations of a sufficiently short
RSI and a sufficiently asymmetric stimulus ratio, the shift in
starting point places it beyond the response threshold for the
correct response. At this point, participants should exhibit nonin-

tegrative responding. That is, on every trial, they should make the
response corresponding to the more frequent stimulus, with aver-
age RT comparable with that observed in an easy signal detection
task. Equation 8 expresses this prediction as a function of task
conditions (RSI and stimulus probability) that defines the surface
depicted in Figure 3. For conditions falling below the surface,
participants should exhibit nonintegrative responding. Behavior
conforming to these predictions would constitute strong support
both for the DDM and for the hypothesis that participants adjust
the parameters of their decision processes to maximize reward rate.
To test these quantitative predictions, we conducted an experiment
that was similar to Experiment 1 but that also involved manipu-
lating the probabilities of the two stimuli in addition to the RSI.

Method

Participants.  Participants were the same as in Experiment 1.
They had completed the five sessions of Experiment 1 before the
five sessions constituting this experiment.

Apparatus and stimuli. Apparatus and stimuli were identical
to those in Experiment 1.
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Procedure. Participants engaged in five 1-hr task sessions
consisting of blocks of trials in which one stimulus (one direction
of coherent motion) was more likely than the other. Within each
block of trials, the direction of motion chosen to be more likely
was selected randomly and with equal probability. Participants
were informed that the stimulus probabilities, in addition to the
RSI, might be different in different blocks. They were once again
informed that blocks would always last 4 min; therefore, faster
responding would produce more trials overall. They were encour-
aged to earn as much money as possible.

Each session consisted of one practice block of 2—4 min (prac-
tice was reduced in later sessions), followed by twelve 4-min
blocks, within each of which a given set of task parameters was
held constant. The task parameters were the RSI and the propor-
tions of leftward and rightward stimuli (equivalently, the prior
probability IT of the favored stimulus). For each participant, mo-
tion coherence was set to the same value as in Sessions 4 and 5 of
Experiment 1. As in Experiment 1, the actual RSI on a given trial
was jittered around the average value with a standard deviation of
100 ms to discourage anticipations. A 4-s penalty delay between
trials was again enforced whenever responses occurred before 100
ms after stimulus presentation. RSI and II were factorially covar-
ied, with RSI taking values of 500 ms, 1 s, or 2 s, and II taking
values of 0.6, 0.75, or 0.9. The order of conditions was counter-
balanced across sessions and across participants with a Latin
square design. Two consecutive blocks of trials were allocated to
each condition in which RSI was 2 s, because a 2-s RSI produced
far fewer trials within a 4-min block than did an RSI of 1 s or 0.5 s.
Finally, the 12 blocks in each session were followed by two 2-min
blocks of a signal detection task identical to that of Experiment 1.

Analysis. To assess predictions, we examined in detail the
performance of the average participant, represented by the pooled
data from all participants. (Data for an individual participant are
presented in Appendix E.) Because estimates of A and T}, were all
that were required to make behavioral predictions, we were able to
base our predictions in Experiment 2 entirely on a fit to the data
from Experiment 1. Estimates of A and T, were used to predict the
optimal threshold z and starting point x,, on the basis of Equations
5 and 6, respectively (c was assumed to be 0.1, as noted previ-
ously). These values of A, T, x,, and z (and the values of the
variability parameters s,, s,, and s, derived from extended DDM
fits) in turn predicted a specific RT, accuracy, and proportion of
right versus left responses as a function of mean RSI and stimulus
probability in the various conditions of Experiment 2.

We also fit the data of Experiment 2 itself simultaneously with
the data from Experiment 1 (these simultaneous fits are the ones
listed in Table 1 and Table 2), and the critical A and T, parameters
were within 8% of the values found in fits to the data from
Experiment 1 alone. However, fitting in this experiment was
complicated by the stimulus—probability manipulation. Although
the data conformed to our prediction of nonintegrative responding
when RSI was small and I was large, the resulting RT distribu-
tions (both for pooled data and for individual participants) were
bimodal, or showed hints of bimodality, in most conditions. Bi-
modality appeared to result within participants from runs of non-
integrative trials interspersed with runs of integrative trials (see
Figure E2), as well as in the pooled data from integration by some
participants and nonintegration by others in some conditions. Be-
cause the DDM with a single set of parameters cannot predict a
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Table 2
Fitted Parameter Values for the Average Participant (Pooled
Data, All Participants)

Parameter Value Bound
Drift (A) 0.17348
Noise coefficient (¢) 0.1
Residual latency (7,) 345.47 ms*
Drift standard deviation (s,) 0.068683 0.08
Starting point range (s,) 0.03 0.03
T, range (s,) 0.1 0.10
Contaminant proportion (p,) 0.029182 0.05
Fast-guess RT
M 266.77 ms 290
SD 49.099 ms 100
Total X2 fit error 1,020.104
Stimulus probability ratio 60:40 75:25 90:10
Threshold z
RSI: 500 ms 0.049545 0.055035 0.062455
Is 0.052885 0.052220 0.059620
2s 0.062745 0.062890 0.064055
Optimal threshold
RSI: 500 ms 0.043370 0.040829 0.033304
Is 0.056341 0.054623 0.049731
2s 0.072819 0.071804 0.069020
Starting point x,,
RSI: 500 ms 0.000915 0.012183 0.021868
Is 0.004557 0.010700 0.011437
2s 0.003909 0.005578 0.011804
Optimal threshold
RSI: 500 ms 0.011686 0.031660 0.063330
Is 0.011686 0.031660 0.063330
2s 0.011686 0.031660 0.063330
Mixture weight
RSI: 500 ms 0.079295 0.481880 0.841250
Is 0.031668 0.224710 0.700610
2s 0.016402 0.135260 0.454670
Drift increment
RSI: 500 ms 0.015360 0.003770 0.000000
Is 0.003040 0.000100 0.083964
2s 0.000000 0.035220 0.057137
x> fit error
RSI: 500 ms 92.91 110.90 297.86
Is 54.31 30.06 112.14
2s 97.53 74.12 150.27

Note. Data from Experiments 1 and 2 were fit simultaneously, leading to
parameter values identical to those in Table 1 for all parameters other than
threshold, starting point, mixture weight, and drift increment. RSI =
response—stimulus interval.

# Compare to average signal detection response time (RT) of 301 ms.

bimodal RT distribution, this made fitting the DDM to data from
Experiment 2 effectively impossible when stimulus ratios were
greater than 60:40 and RSI was less than 1 s.”

"In contrast to our difficulty in fitting the DDM to data produced by
unequally likely stimuli, Ratcliff and McKoon (2008) were able to fit data
reliably with RSI values comparable to our fastest condition and with a
stimulus ratio of 75:25. However, their experiment involved several differ-
ences in design: response deadline bands, with “too fast” and “too slow”
messages for feedback along with correct/error feedback; course credit for
undergraduates as payment instead of payment for correct responses; and
explicit instruction about the stimulus proportions within each block. Never-
theless, SAT adjustment was observed and was qualitatively consistent with
the predicted starting point and threshold adjustments of Bogacz et al. (2006).
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Although a mixture of integrative and nonintegrative responding
is not predicted by an optimally parameterized, pure DDM, this
result should be expected if there is variability in the model’s
parameters from trial to trial; this is precisely what is assumed in
the extended DDM. To fit the data from Experiment 2, we there-
fore fit a model that was a mixture of a nonintegrative or fast-guess
distribution (consisting only of guesses that the more likely stim-
ulus was present) together with an RT distribution generated by the
DDM. Because the fast responses that were made in the signal
detection blocks at the end of each session appeared almost nor-
mally distributed, we modeled the nonintegrative mixture compo-
nent as coming from a normal distribution.®

We also fit a model that allowed an increment to be added to the
drift term; in this way, response biasing could be achieved by
increasing drift toward the more likely response threshold, no
matter which stimulus was presented. This is equivalent to chang-
ing the reference point in the one-dimensional stimulus space that
determines a drift value of O (see Ratcliff, 1985, for discussion of
how the 0-point of drift relates to the criterion parameter of signal
detection theory). This type of model has been successfully fit to
monkey behavioral and neurophysiological data in tasks that vary
signal discriminability from trial to trial (e.g., Yang et al., 2005).
Adapting the average drift across conditions may also be the
optimal strategy in tasks with constant discriminability if the
variability parameters of the extended DDM are large enough and
if participants cannot act to reduce this variability below a given
level; the current lack of analytical results for the extended DDM
makes this result (or its opposite) difficult to prove. Empirically,
however, including a drift increment term that can vary across
conditions allowed us to test whether human participants can be
modeled as adapting drift across conditions when signal discrim-
inability is constant from trial to trial (a circumstance in which
optimal performance, in contrast, requires a pure DDM and no
drift adaptation).

Results

Quantile probability plots. The top row of panels in Figure 11
displays the quantile probability plots for trials in which the
favored stimulus is presented; the bottom row displays the quantile
probability plot for the unfavored-stimulus trials.

In the superimposed scatterplot of RTs, correct response RTs are
plotted in green and error RTs are plotted in red. This makes
visible the shift of error and correct RT probabilities in response to
unfavored stimuli as II increases (see bottom row of panels in
Figure 11). This approach also highlights the occurrence and
relative frequency of anticipatory responding across conditions.

For a stimulus ratio of 60:40 (I = 0.6), quantile probability
plots (shown in the leftmost column of Figure 11) continue to
show SAT adaptation of the type shown in Experiment 1: For both
types of stimuli, the plots retain roughly the U shape seen in
Figure 6, consistent with Prediction 2d. In response to unfavored
stimuli, accuracy decreased (as indicated by the shift of the quan-
tile columns toward the middle of the graph). In response to
favored stimuli, correct responses in a given condition tended to be
faster than error responses. Conversely, in response to unfavored
stimuli, error responses were typically faster than correct re-
sponses.
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For a stimulus ratio of 75:25, performance resulted in quantile
probability plots with radically different shapes (middle column of
Figure 11). Accuracy in response to favored stimuli increased
markedly relative to the 60:40 condition, moving correct quantile
columns to the right edge of the plot and error columns to the left.
Unfavored stimuli, in contrast, produced quantile columns that are
shifted further toward the center, and correct responses became
less likely than errors when RSI was 500 ms. Furthermore, errors
were much faster than correct responses to the unfavored stimulus,
and this asymmetry in RT was more exaggerated for shorter RSIs.
Both of these phenomena are consistent with an optimally tuned
DDM, in which threshold magnitudes decrease as RSI decreases,
and the starting point moves closer to the response threshold for
the favored stimulus as Il increases. Similar starting point shifts
and relative constancy of drift (but not anticipatory responding)
were observed by Ratcliff and McKoon (2008) in their investiga-
tion of stimulus probability effects in a two-alternative motion
discrimination task that was similar to Experiment 2 but used a
fixed RSI and response deadline bands.

The quantile probability plots in the 90:10 conditions show
more exaggerated versions of the patterns in the 75:25 conditions.
The rightmost column of panels in Figure 11 shows favored
stimulus quantile columns pushed even farther to the extreme right
and left of the plot than in the 75:25 case. Overall correct RT was
also faster, and error RT was slower, than in the 75:25 case. In
response to unfavored stimuli in the 90:10 conditions, correct
responses were less likely than error responses for all values of
RSI. These results are also consistent with an optimally tuned
DDM, in which the starting point is shifted near or beyond the
response threshold for the favored stimulus.

Model fits. Table 2 lists the parameters estimated by fitting a
mixture model consisting of a nonintegrative component (a normal
distribution) and an integrative component (an extended DDM
first-passage time distribution). Figure 12 shows predicted RT
densities based on these fits superimposed on the empirical histo-
grams; correct and error RTs to favored and unfavored stimuli are
plotted separately. The first feature to notice in these plots is that
the proportion of correct responses to unfavored stimuli decreases
as RSI decreases and as II increases, which is consistent with the
increase in response bias predicted by the optimally parameterized
DDM (Prediction 2c).

Also noteworthy in these plots are the clear signs of bimodality
in the favored-correct panels of all conditions (except the 60:40
stimulus-ratio/2-s RSI condition), with the earlier peak decreasing
in height relative to the later peak as RSI increases and as stimulus
ratios approach 50:50. In all 90:10 stimulus-ratio conditions and in
the 500-ms RSI/75:25 stimulus-ratio condition, the narrower,
faster, nonintegrative component of the bimodal mixture had a
larger RT density peak than the slower integrative component in

8 The DDM with a single absorbing boundary, which has previously been used
to model simple reaction times (Pacut, 1977), might be a suitable model for
nonintegrative responses. The Wald distribution describes this model’s first-
passage times (Luce, 1986), but this approximates a normal distribution when drift
is large, as we should expect for the highly salient signals in our tasks. There is also
reason to suppose that Grice’s (1968) deterministic accumulation model with
random thresholds might be a good model for such simple RTs, and the RT
distribution for this model is exactly the normal distribution.
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Quantile probability plots for all conditions of Experiment 2. Superimposed scatterplots of response time data

are plotted in green for correct responses and red for errors. The left column shows quantile probability plots for a 60:40
stimulus ratio, the middle column shows quantile probability plots for a 75:25 stimulus ratio, and the right column shows
quantile probability plots for a 90:10 stimulus ratio. The top row of panels shows quantile probability plots for responses to
the more likely stimulus. The bottom row plots responses to the less likely stimulus; note the exchange of correct and error
probabilities as stimulus-ratio asymmetry increases. RSI = response—stimulus interval.

the favored, correct RT panel (upper right corner of the 2 X 2 plot
panels in Figure 12). Nonintegrative peaks that were smaller than
the integrative peaks occurred in the 75:25 stimulus-ratio condi-
tions with RSI equal to 1 s and 2 s, and in all 60:40 stimulus-ratio
conditions.

Table 2 lists the fitted mixture weights on the nonintegrative
component (with integrative weights equal to 1 minus the nonin-
tegrative weights). These weights are greater than 0.5 in the 90:10
stimulus-ratio conditions with RSI equal to 500 ms and 1 s, and
they decrease in the same condition order as the nonintegrative RT
density peaks. Qualitatively, this is the pattern of shifting relative
weights on the two mixture components that should be expected
for a model that approximates an optimally parameterized DDM
but which has variability in its parameters across trials (and may
therefore switch between integrative and nonintegrative respond-
ing as the starting point crosses back and forth across the favored
response threshold from trial to trial).

Extended DDM parameter estimates for the integrative mixture
component are also listed in Table 2.° In contrast to Experiment 1,
thresholds were frequently smaller than the optimal value for the
pure DDM (see Figure 13), except, again, in the 500-ms RSI
conditions and in the 90:10 stimulus-ratio conditions with the
shortest RSIs. However, these estimates may become less reliable
as the mixture weight on the nonintegrative component becomes

large, because of the relatively small number of integrative re-
sponses in these conditions and possibly because the fast RTs may
not be properly apportioned to the two mixture components. In the
90:10 conditions, for example, thresholds do not appear to be
modulated at all across conditions (in contrast, the effect of RSI on
the mixture weight is enormous for these 90:10 conditions).
Starting points were similarly smaller than pure DDM optimal
in all cases. Figure 14 shows fitted starting points, normalized by
the distance from the lower threshold to the upper threshold,
plotted against similarly normalized optimal starting points. In this
figure, values greater than 0.5 imply a bias toward upper threshold
crossings. As predicted, starting points increased as II increased,
but not as much as predicted. Note, however, that many of the data
points come from mixture component fits in conditions in which
responses were primarily nonintegrative and were predicted to be
so (all data points were to the right of the vertical line, indicating

° Data from Experiments 1 and 2 were fit simultaneously, leading to
identical values for A, T, s4, §,, s, and p, in both experiments. Drift-
increment and mixture weight parameters were not significantly different
from 0 in all conditions of Experiment 1, and fits to data from Experiment
1 (data not listed) that constrained these parameters to 0 led to very similar

values of A, Ty, s, Sy, 5, and p,.
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Figure 12. Fits to response time (RT) distributions in Experiment 2. Each response—stimulus interval (RSI)/
stimulus—probability condition is represented by a panel consisting of a 2 X 2 set of four plots: RTs for correct
responses to favored stimuli (upper right of panel); correct responses to unfavored stimuli (upper left); errors for
favored stimuli (lower right); and errors for unfavored stimuli (lower left). Three columns of these 2 X 2 plot
panels correspond to three stimulus probability conditions—60:40, 75:25, and 90:10 stimulus odds—and three
rows correspond to three RSI conditions: 500 ms, 1 s, and 2 s. Resp. Prob = response probability.
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Figure 13. Comparison of fitted thresholds to optimal thresholds; key
identifies different stimulus—probability conditions, and the black identity
line indicates what would be a perfect match. The 50:50 ratio data are from
Experiment 1.

starting points that exceed the upper threshold). A possible expla-
nation for the difference in both starting point and threshold
patterns between Experiments 1 and 2 derives from the fact that
participants know that Experiment 2 involves manipulations of
stimulus probability and that Experiment 1 does not. Thus, they
may consciously try to develop a response bias in Experiment 2
that involves both lowering thresholds and shifting starting points.

Finally, the drift increment value did not show the systematic
pattern across conditions that would be expected for a parameter
that was strategically adapted to produce a response bias (i.e.,
growing as Il increased and perhaps as RSI decreased). It was
significantly different from O in four conditions, but two of these
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involved 90:10 stimulus ratios and, thus, a relatively small number
of integrative responses. Therefore, there appears to be little evi-
dence of strategic drift adaptation across conditions.

Comparing decision RT densities to the signal detection RT
density. Another test of the hypothesis that RT distributions are
a mixture of integrative and nonintegrative responding is to com-
pare the RT distribution for a given condition of discrimination
trials with the RT distribution for signal detection trials (signal
detection blocks occurred at the end of each session of Experi-
ments 1 and 2). We predicted that these distributions would be
comparable in conditions eliciting nonintegrative responding.

The three panels of Figure 15 compare empirical decision RT
densities with the signal detection RT density (these are Gaussian-
kernel-smoothed densities of empirical data rather than predicted
densities based on parameter fits; using smoothed densities rather
than histograms makes it easier to superimpose data plots from
multiple conditions). Within each panel, decision RT densities are
plotted for a single RSI and the full range of stimulus ratios. Data
from the 90:10 ratio conditions show how nonintegrative respond-
ing created relatively peaked densities in the 0.5-s and 1-s RSI
conditions, with peaks located near the peak of the signal detection
RT density. In contrast, the densities for the 60:40 ratio conditions,
and for the 50:50 conditions of Experiment 1, are located about
200 ms to the right. The 75:25 ratio conditions are particularly
interesting: They have a wide spread, providing a transitional form
between the 60:40 densities and the 90:10 densities, consistent
with a mixture between integrative and nonintegrative responding.

These plots show a very clear pattern: As RSI decreases and 11
increases, decision RT densities develop a second mode with the
same location as the signal detection density. This mode increases
in amplitude while the mode located farther to the right (closer to
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Figure 14. Comparison of fitted starting points to optimal starting points; key identifies different stimulus—
probability conditions. The 50:50 data are from Experiment 1.
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Figure 15. Comparison of signal detection response time (RT) density with RT densities in all two-alternative
forced-choice (2AFC) conditions of Experiment 2. Mean response—stimulus intervals (RSIs) are 500 ms, 1 s, and
2 s in the left, middle, and right panels, respectively. As the stimulus-ratio asymmetry increases, the RT density

for two-alternative decisions approaches that for the
becomes more pronounced as the mean RSI decreases

signal detection condition. This change in the RT density
. In addition, a bimodal density appears for conditions with

unequally likely stimuli, suggesting a mixture of integrative and nonintegrative responding. The nonintegrative
modes increase in amplitude (and the integrative modes decrease) as the asymmetry in stimulus ratios increases

and as the mean RSI decreases.

the 50:50-ratio/2-s RSI location) decreases in amplitude. Ulti-
mately, the density becomes unimodal and very similar to the
signal detection density (the main difference being the presence of
anticipatory responses indicated by a tail to the left of the signal
detection density).

Response proportions, RT, and accuracy. We now compare
the observed response proportions, RTs, and error percentages to
their predicted values, given fitted values of A and T|. As II
increases, maximizing reward rate should cause a bias toward the
favored response to develop as a result of starting point shifts
(determined by Equation 6); as RSI decreases, this bias should at
some point cause nonintegrative responding; that is, exclusive
choice of the favored response, with RTs that are comparable with
signal detection RTs. The particular values of RSI and II that are
predicted to produce this nonintegrative responding (i.e., solutions
for z of Equation 5 that equal the x,, values predicted by Equation
6) depend on fitted values of drift A and residual latency 7, which
may differ from participant to participant.

If correlations among parameter estimates or wide confidence
intervals around them make it difficult to assess whether thresh-
olds and starting points are near their optimal values, then com-
paring such qualitative features of observed behavior with the
same features of behavior predicted by an optimally tuned DDM
can help answer this question. Recall also that the conditions for
optimality discussed in Bogacz et al. (2006) depend on the pure
DDM. Because the extended DDM was far easier to fit to the data,
and because variability parameters in these fits tended to be far
from 0, our predictions regarding optimal threshold and starting
point values are only approximations to optimal tuning for the
extended DDM (although our extended DDM simulations suggest
that these approximations may be reasonably accurate). Thus, an
examination of qualitative features of behavior may be particularly
helpful.

Figure 16 illustrates the comparison of observed average RT,
accuracy, and response proportions in all conditions of Experi-
ments 1 and 2 with predictions based on fitted A and T, values. The
top row of plots shows a close match between the response

proportions predicted by the pure DDM (heavy dashed line) and
the proportions observed (solid line). For comparison, a thin
dashed line depicts the predictions of a simple probability-
matching hypothesis, which specifies that response proportions
should equal stimulus proportions; this alternative hypothesis is
not well supported by the data. Good matches also occurred
between the predicted and observed RT averages (middle row of
plots). Quantitatively, the match between the predicted and ob-
served error percentages (bottom row of plots) is not as close in the
60:40 and 75:25 stimulus-ratio columns, but the overall shape of
the error percentage curves is reflected in the observations, and
there was a decrease in the average magnitude of these observed
percentages as RSI increased, as predicted. The proportion asym-
metry I defining the critical probability surface (the point at
which a transition to nonintegrative responding is predicted to
occur) is plotted as a thick vertical line in all conditions where it
falls within the corresponding plot’s x-axis limits. As predicted,
the average participant approached nonintegrative responding in
the 90:10 ratio conditions but appeared to achieve this type of
behavior fully only when both the ratios were 90:10 and RSI was
either 0.5 s or 1 s.

Discussion

Evidence from Experiment 2 provides support for a nearly
optimally tuned DDM as a model of decision making in this task.
Empirical response proportions closely matched the proportions
predicted by an optimally tuned DDM in the case of pooled data
from all participants (Figure 16). RT and accuracy data also
qualitatively matched the shape of the predicted RT and accuracy
curves plotted in each RSI condition in Figure 16 (similar results
for an individual participant are given in Appendix E). Parameter
fits showed clear threshold and starting point shifts in the expected
directions across conditions (Figures 13—14), although these pa-
rameters often deviated from their optimal values (especially in
those conditions with a large proportion of nonintegrative re-
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Figure 16. Comparison of predicted and observed response proportions (top row of plots), response times
(RTs) (middle row) and error percentages (bottom row) in all conditions of Experiment 2, based on fits of drift
and residual latency. The horizontal axis in each plot denotes the stimulus proportions (0.6 indicates a 60:40
ratio, 0.75 indicates a 75:25 ratio, and 0.9 indicates a 90:10 ratio). The left column of plots corresponds to a mean
response—stimulus interval (RSI) of 500 ms, the middle column corresponds to a mean RSI of 1 s, and the right
column corresponds to a mean RSI of 2 s. Standard error bars are plotted, but are barely visible, in all plots.

sponses, which may make parameter estimation more imprecise
for the remaining proportion of integrative responses).

Examining the RT densities as task conditions changed in Fig-
ures 12 and 15 provided a clear picture of the way in which RT
distributions were transformed as the stimulus—ratio asymmetry
increased and the mean RSI decreased: Unimodal integrative RT
densities took on a transitional bimodal shape, followed by a
unimodal, nonintegrative density shape that was very similar to the
density for signal detection responses.

Experiment 3

The theory of optimal decision making applies also to the case
in which the two responses are not equally rewarded (i.e., a
proportion r of some unit of reward is assigned to one response
when correct, and 1 — r is assigned to the other). The assumption
of optimality when r = 0.5 leads to specific predicted values for
the starting point x,, and the threshold z, and corresponding pre-
dictions regarding speed, accuracy, response bias, and a shift to
nonintegrative responding:

Prediction 3a: Estimates of the starting point should be
greater than O (i.e., closer to the threshold corresponding to
the more rewarded response); starting point should be shifted

from O into the range defined by Equations 9-10, which are
approximations analogous to Equations 6 for unequal stimu-
lus proportions.

Prediction 3b: As a consequence, the decision maker should
choose the more rewarded response more frequently than the
alternative, and the average RT should be shorter and the
accuracy lower for that response. (Qualitatively similar pre-
dictions were borne out in a study by Voss et al., 2004.)

Prediction 3c: With other task factors held constant, numer-
ical results in Bogacz et al. (2006) show that thresholds
should decrease more dramatically than in Experiment 2 for
equal values of Il and r as r increases.

Prediction 3d: As in the case of unequal stimulus proportions,
sufficiently large reward asymmetries and sufficiently short
RSIs should shift the starting point beyond the threshold for
the more rewarded response, implying the existence of a
critical reward-ratio surface. Numerical results (Bogacz et al.,
2006) show that this surface is similar in shape to the critical
probability surface in Figure 3 but that it predicts nonintegra-
tive responding at smaller values of r than of II, all other
parameters being equal. (In contrast to the relative reward
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ratio, the absolute magnitude of the reward scale is predicted
to have no effect on behavior.)

To test these predictions, we attempted to leverage the results of
Experiment 2 to develop a task involving a single RSI, a single
motion coherence, and a single reward asymmetry that would
define a point near the critical reward-ratio surface for most
participants. Ideally, some participants would lie on one side of the
surface, and the remainder would lie on the other because of
individual differences in the acuity of motion perception (modeled
as A/c).

Method

Participants.  Fifteen participants, ranging in age from 18 to 27
(M = 22), were recruited through the paid experiments website of
the Department of Psychology, Princeton University. None of
these individuals participated in Experiment 1 or 2.

Stimulus and apparatus. Apparatus and stimuli were identical
to those used in Experiments 1 and 2.

Procedure. Participants engaged in a single 50-min session in
which leftward and rightward motion stimuli were presented with
equal probabilities. Coherence was set to 10%. The session con-
sisted of one 4-min practice block followed by twelve 3-min
blocks with self-paced rest periods in between. RSI was constant
across blocks and equal to 1 s. Participants received 3 cents for
every correct response on one key (Z or M, counterbalanced across
participants) and 1 cent for a correct response on the other key (i.e.,
the reward ratio was set to 3:1). They earned nothing for incorrect
responses. Participants were informed of the score that they earned
(3, 1 or O cents) after each trial. They were not explicitly informed
that one response would be rewarded more than the other when
correct. Participants were paid the total amount accrued during the
experimental session or $10, whichever was higher (all the partic-
ipants earned more than $10).

In this experiment, the mean RSI for each trial was the sum of
a fixed 300-ms interval plus an exponentially distributed delay
with a mean of 700 ms (truncated at 1.91 s) to discourage antici-
patory responding. As in Experiments 1 and 2, a penalty delay was
enforced whenever a response was made less than 100 ms after
stimulus onset to discourage anticipations. Participants were also
informed that the block durations were fixed so that faster respond-
ing would lead to more trials. They were once again encouraged to
earn as much as possible.

Results

Response proportions, RT, and accuracy. Consistent with Pre-
diction 3b, 12 of 15 participants chose the favored response more
frequently than the unfavored response (a one-tailed binomial test
yields p = .018). Consistent with Prediction 3d, 4 of the 15
participants chose the favored response almost exclusively, in
proportions greater than 0.90. The remaining 11 participants
had proportions in the range between 0.46 and 0.63. This pattern
suggests that 4 of the participants performed the task mostly in
nonintegrative mode, whereas the rest performed mainly in inte-
grative mode.

Consistent with Prediction 3b, median RTs were significantly
smaller for the favored than for the unfavored response, #(14) =
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2.79, p = .014; see Maddox and Bohil (1998) for similar results
with fixed viewing times. The difference remained significant even
after removing the four nonintegrative participants and the first
block of trials (discussed earlier) of the remaining participants,
1(10) = 2.43, p = .035). For those participants who performed
the task in integrative mode, the error percentages for the
favored response were, on average, higher than those for the
unfavored response, although the difference did not reach sta-
tistical significance, possibly because of the small sample size,
1(10) = 1.74, p = .11.

Model fits.  After we removed the 4 nonintegrative participants
and the first block of trials of the remaining participants, the
pooled data was amenable to fitting by the extended DDM (al-
though fit errors were higher than for the participants in Experi-
ment 1, who had much more practice). Parameter values for the fits
are presented in Table 3. The fits to the pooled data from Exper-
iment 3 were computed in MATLAB using the Diffusion Model
Analysis Toolbox (DMAT) software (Vandekerckhove & Tuer-
linckx, 2007a, 2007b). We explored the use of DMAT to corrob-
orate the model-fitting performance of our own software and got
similar results; however, with a smaller data set and less practiced
participants, we got substantially larger fit errors for a single
condition, which our constrained approach would make even
worse. We therefore report the results obtained with DMAT.

The fitted value of the starting point x, was 0.0063. Consistent
with Prediction 3a, the starting point is shifted toward the more
rewarded response threshold. To test whether the shift was statis-
tically significant, we computed a 95% confidence interval for the
starting point by generating 1,000 bootstrap samples using the
parametric bootstrap method implemented in DMAT. The confi-
dence interval (0.0055, 0.0071) does not contain 0, indicating a
significant shift of x, away from the point of zero response bias.
The optimal range of x, values (0.0148, 0.0295) was obtained by
substituting the fitted value of A into Equations 9-10 (Prediction
3a). The fitted value of x,, is too small to be optimal, at about half
the value of the lower limit of the interval. Thresholds were
suboptimally large, violating Prediction 3c, because they would be
large even for the comparable 1-s RSI condition of Experiment 1
(i.e., with r = .5), given that fitted drift values are similar in both
experiments.

Decision versus signal detection. Similar to the results of
Experiment 2, the fact that some participants exhibited noninte-

Table 3
Fitted Parameter Values for the Average Integrative Participant,
With 3:1 Asymmetric Reward Proportions (3 Cents vs. 1 Cent)

Parameter Value
Threshold (z) 0.0741
Starting point (x,) 0.0063
Drift (A) 0.1861
Residual latency (7)) 356.4 ms?
Drift SD (s,) 0.1199
Starting point range (s,) 0.0771
T, range (s,) 0.2123
X fit error 244.83

# Compare to average signal detection response time of 301 ms in Exper-
iments 1 and 2.
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grative behavior during most of the experimental session whereas
others integrated led to a bimodal shape for the empirical density
of pooled RTs.'” This density had an early mode matching the
peak of the RT density for the signal detection task in Experiments
1 and 2. Figure 17 presents the empirical RT densities for the
pooled data of all 15 participants, with separate densities for
favored correct, favored error, unfavored correct, and unfavored
error responses. These were superimposed on the signal detection
RT density obtained in Experiments 1 and 2. The favored correct
RT density shows two clearly discernible modes, with the earlier
mode almost aligned to the peak of the detection task density. This
indicates that, during nonintegrative performance, participants
pressed the more rewarded key almost exclusively, consistent with
Prediction 3d. While in integrative mode, however, they made
favored and unfavored responses in similar proportions (both
density curves are rescaled so that the area below them is propor-
tional to the number of responses of each type). The plots resemble
those in Figure 15, illustrating the predicted similarity between the
unequal probability conditions of Experiment 2 and the unequal
reward condition of Experiment 3.

Discussion

Experiment 3 demonstrates that, when reward inequality is
introduced in two-alternative decision-making tasks, participants
are able to adjust their decision behavior within a single session in
a way that qualitatively matches the predictions of the theory of
optimal decision-making. The magnitude of the observed adjust-
ment, however, was smaller than predicted, perhaps because more
practice was required before optimal control strategies could de-

favored correct

1.4} favored error

— — — unfavored correct

— — — unfavored error
~ signal detection

Likelihood

Favored and unfavored response RT

Figure 17. Distribution of response times (RTs) for the favored and
unfavored responses in Experiment 3, plotted against the RT distribution
for signal detection obtained in Experiment 2. The RT distribution for
correct favored responses is bimodal, with the earlier mode almost aligned
to the maximum in the signal detection curve. The distribution of incorrect
favored responses is concentrated around that early mode. Conversely, the
distributions of unfavored responses show almost no sign of an early mode,
and their maximum is roughly aligned with the second mode of the
distribution for correct favored responses, which indicates that early re-
sponses were almost exclusively favored ones.
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velop. As predicted by the theory, participants were more likely to
make the more rewarded response than the alternative and were
faster and made more mistakes when making favored rather than
unfavored responses.

The theory also predicts that, for sufficiently large values of the
reward ratio, participants will select the more rewarded response
exclusively, regardless of the identity of the stimulus. In Experi-
ment 3, we chose a reward ratio (3:1) that was likely to be large
enough to trigger nonintegrative behavior for some of the partic-
ipants, based on what we had observed with similar motion co-
herences and RSIs in Experiment 2 and based on the similarity of
the effects predicted by Equation 6 for stimulus proportion ma-
nipulations and the effects of reward asymmetry predicted by
Equations 9—-10. The results of the experiment matched this qual-
itative prediction for most participants (excluding the 3 who dis-
played no response bias): Some participants exhibited nonintegra-
tive behavior (they chose the favored response for almost the
whole session), whereas the majority showed integrative behavior
(they chose both responses with frequencies that were similar, but
with a bias toward the favored response).

General Discussion

We evaluated quantitative predictions of an optimal model of
2AFC decision making. These predictions (Bogacz et al., 2006)
focused specifically on the behavioral effects produced by manip-
ulations of mean RSI, stimulus probability, and relative reward
magnitude—factors that enter into a wide range of decision-
making tasks.

In a motion discrimination task with equally likely stimuli and
equally rewarded responses, a reduction of the mean RSI was
predicted to cause participants to place a greater emphasis on
speed and less on accuracy. More specifically, this shift in SAT
was predicted to occur as a result of specific threshold reductions,
which could be identified by fits of the DDM to the observed RT
distributions. Evidence from Experiment 1 supported these predic-
tions, although the degree of threshold adaptation was less than
predicted, and thresholds appeared suboptimally large in two of
three conditions.

When one stimulus was more frequent than the other, a response
bias was predicted to develop as a result of specific starting point
shifts, producing more errors when the less likely stimulus ap-
peared but faster RTs when the more likely stimulus appeared.
When the stimulus probabilities were sufficiently asymmetric and
RSIs were sufficiently short, an extreme response bias was pre-
dicted that would involve nonintegrative responding; that is, ex-
clusive responding in favor of the more likely stimulus, with RT
distributions comparable to those in a signal detection task involv-
ing the same, easily detectable stimuli. Evidence from Experiment
2 showed that such biases developed. Furthermore, RT, accuracy,
and response proportions manifesting these optimal biases could
be accurately predicted in Experiment 2, purely on the basis of fits
to data collected in Experiment 1, as well as on simultaneous fits
to data from Experiments 1 and 2. Finally, when correct responses
to one stimulus were more rewarded than correct responses to the

19 In Experiment 2, in contrast, bimodality appeared even within the RT
distributions for individual participants.
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other, similar biases were predicted to develop. Evidence from
Experiment 3 suggested that these biases (including nonintegrative
responding) developed as predicted, although model fits suggested
suboptimally small starting-point shifts and threshold reductions
for those participants who did not switch to nonintegrative re-
sponding.

These findings raise an important theoretical question involving
adaptation to changing task conditions: Because task parameters
such as mean RSI that determine optimal thresholds must be
repeatedly sampled to optimize the DDM or any other model, how
quickly can adaptation be accomplished? Also, how accurate (i.e.,
how close to optimal) can learned thresholds and starting points
become? Human participants, of course, cannot plausibly adapt
thresholds instantaneously: New RSI values must be experienced
before adaptation can occur. There is empirical evidence that
human participants, performing well-practiced tasks, are capable
of adapting performance over relatively short intervals (e.g., in as
few as 5-10 trials) after a change in task conditions (R. Bogacz,
personal communication; R. Ratcliff, personal communication;
Ratcliff et al., 1999; but see, e.g., Myung & Busemeyer, 1989,
where evidence was found only for slow adaptation). The well-
known phenomena of posterror slowing (Rabbitt, 1969) and of
recovery of speed after multiple correct responses (Rabbitt &
Vyas, 1970) are also consistent with rapid adjustments of decision
thresholds. Simen, Cohen, and Holmes (2006) proposed a rapid
threshold adaptation algorithm that can achieve nearly optimal
thresholds within this 5-10-trial time frame. This algorithm adj-
usts thresholds = z continuously, setting them equal at every
moment to a decreasing, linear function of a running estimate of
recent reward rate that is estimated by an exponentially weighted
average of recent rewards: z(t) = z,,,, — W * reward rate. Future
work will investigate whether this or some other process is at work
in adapting thresholds and starting points (or perhaps other DDM
parameters).

Recent empirical work (Bogacz et al., in press) may also help to
determine whether parameter correlation is an appropriate expla-
nation for the observed pattern of suboptimally large thresholds in
many conditions or whether the use of objective functions other
than reward rate (e.g., ones that include an emphasis on accuracy)
can better explain such findings. This empirical work aims specif-
ically to apply another prediction of the theory in Bogacz et al.
(2006)—the prediction of optimal performance curves relating RT
to accuracy—to data involving a wide variation in error percent-
ages to distinguish between the possible objective functions gov-
erning behavior. Because error percentages never exceeded 20% in
our experiments, we could not test this prediction.

An alternative explanation for suboptimally high thresholds is
that estimates of reward rate may be subject to temporal uncer-
tainty. The asymmetric functional relationship of reward rate to
threshold noted earlier (Figure 2A), as well as recent theoretical
work (Zacksenhouse, Holmes, & Bogacz, in review), suggests that
efforts to maximize reward rate in the presence of timing uncer-
tainty should lead to overestimation of the optimal threshold. This
suggests that individuals with less accurate ability to estimate
interval duration should overestimate optimal thresholds to a
greater extent. We are currently investigating this prediction.

We now address the final theoretical issue raised by our find-
ings. This involves the frequently observed phenomenon in which
fitted values of residual latency appear to be unreasonably large
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under the simple additivity and pure insertion assumptions of
Donders’s subtraction method. Under these assumptions, the re-
sidual latency should be equal to the average signal detection RT
in our task, as the signal detection task was identical to the
decision-making tasks, except insofar as it required no discrimi-
nation between leftward and rightward motion.

In many different fits to our data with a variety of constraints
among parameters and upper bounds on variability parameters, as
well as with different subsets of the data itself, the fitted residual
latencies for individual participants and for the group as a whole
were usually 50 ms or more longer than the average signal detec-
tion RT observed in the last two blocks of all sessions of Exper-
iments 1 and 2. Differences of more than 25 ms were produced
even in fits of the pure DDM to the pooled data, so correlations of
T, with overly inflated variability parameters (cf. Ratcliff &
Tuerlinckx, 2002) cannot entirely explain the phenomenon (al-
though such correlations seem to explain why the discrepancies
between T, and the average signal detection RT were about 70 ms
larger in completely unconstrained fits of the extended DDM to
data from Experiments 1 and 2). There have been many criticisms
of Donders’s subtraction method and the related assumption of
pure insertion in models involving stages of processing. Neverthe-
less, these stages-of-processing approaches continue to exert a
strong conceptual influence on RT research (Sternberg, 2001); in
particular, such an approach is embodied in the typical interpreta-
tion of the DDM’s residual latency parameter.

Keeping these caveats regarding additivity in mind, what our
data seem to suggest is that there may be an irreducible increment
of roughly 50 ms that is incurred when participants integrate,
relative to nonintegrative responding. This may reflect the over-
head of an additional stage of processing that can be eliminated
when integration is not needed. In this conception, integrating
information automatically causes the residual latency component
of RT to increase by a positive quantity, A, in addition to requiring
additional time (DT) for the DD process to cross threshold (RT =
DT + T, + A). Evidence for this comes from the transitional
shapes of RT densities in Experiments 2 and 3: Rather than simply
shifting leftward and diminishing in width, the RT densities from
integrative response conditions go through a bimodal stage before
converging to the shape of the signal detection RT density (Figures
15 and 17).

Bimodality of this type is consistent with a mixture model of
integrative and nonintegrative responses, and the gap between
modes in almost all of the correct/favored distributions in Exper-
iment 2 is furthermore consistent with an irreducible T}, increment:
After all, a mixture model need not produce bimodality, but a large
enough 7, increment would tend to keep the two mixture compo-
nents sufficiently separated so that bimodality would result. Fur-
thermore, in the 90:10 stimulus-ratio conditions in which nonin-
tegrative responding is evident, average RT is not equal to the
fitted T, value: Instead, average nonintegrative 2AFC RT is sta-
tistically indistinguishable from the average signal detection RT.
The data suggest that participants make an all-or-none decision
either to integrate or not to integrate and thereby to reduce RT
substantially (by A + DT; Figure E2 in Appendix E shows an
individual participant’s performance from trial to trial that illus-
trates what appears to be precisely a switching from integrative to
primarily nonintegrative behavior in fast, asymmetric blocks of
Experiment 2).
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In terms of neural processing, a time overhead A might be
incurred by requiring processing by an additional, intermediate
signal discrimination layer between a sensory input layer and a
motor output layer (see the network models in Bogacz et al., 2006;
Shadlen, Britten, Newsome, & Movshon, 1996; Simen et al., 2006;
and Usher & McClelland, 2001, which all model the decision
process as occurring in a specific network layer). This layer might
require some nonzero “startup time” before carrying out its signal
discrimination function, perhaps as a result of conduction times
between distant brain areas or as a result of the smearing of sudden
stimulus onsets into relatively gradual rises in the decision layer’s
inputs due to the effects of sluggish processing in earlier network
layers. Time might, therefore, be saved if stimulus information
could skip over this intermediate layer, the function of which
would be unnecessary if the participant was precommitted to a
particular response before the stimulus appeared. More behavioral
and physiological work would be needed to evaluate this hypoth-
esis. Fortunately, however, very little machinery would be required
to achieve such a precommitment in the previously mentioned
network models: If their discrimination layers incurred a one-time
startup cost but then remained committed to a single response
(equivalently, if the DDM starting point remained beyond one of
the thresholds), then the models would perform signal detection as
quickly as models lacking a discrimination layer. These linear
systems models would need to be augmented, however, to include
propagation delays or nonlinear activation dynamics to account for
the hypothetical startup delay during integrative responding.

Conclusion

The theory of optimal decision making makes quantitative pre-
dictions that can be tested by model fitting and qualitative predic-
tions that can be directly observed. Both types of prediction were
supported by the data in our experiments. This theory also appears
to provide leverage even with models that only approximate the
optimal decision process. The extended DDM, for example, in-
volves variability in starting point, drift, and residual latency that
deviate from the optimal SPRT. Nevertheless, we were able to
predict RTs, accuracy, and response proportions based on ex-
tended DDM fits of A and T, by computing thresholds and starting
points from expressions developed for the pure DDM. In principle,
the same approach is applicable to models such as the Ornstein—
Uhlenbeck process incorporated into decision field theory (Buse-
meyer & Townsend, 1993) and the leaky-competing accumulator
model of Usher and McClelland (2001); these models, like the
extended DDM, contain the pure DDM as a special case. At the
very least, when the parameters of these models are not too far
from those that implement the pure DDM, the same phenomena
(threshold and starting-point shifting, and transitions to noninte-
grative responding) should occur in similar task conditions. Thus,
the normative theory of 2AFC decision making may be applicable
even to models for which it was not expressly developed.

For this reason, future experiments designed to discriminate
between competing models of decision making may benefit from
the type of manipulations involved in our experiments; that is, the
type of manipulations affecting reward rate that are typically
undertaken in studies of instrumental conditioning (e.g., Herrn-
stein, 1997). Different models may make dramatically different
predictions when coupled with the assumption that reward rate (or
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some other objective function, e.g., a linear combination of RT and
accuracy or of reward rate and accuracy) is being maximized: For
example, they may make different predictions about when a tran-
sition to nonintegrative responding should occur, and this transi-
tion should be clearly identifiable in the data, as shown in Exper-
iments 2 and 3. Therefore, a detailed, quantitative analysis of these
predictions may help to tease apart what often appear to be subtle
differences between alternative models of decision making.
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Appendix A

Conversion Between Terminology of Bogacz et al. (2006) and Ratcliff and Tuerlinckx (2002)

Table A1 provides a parameter conversion table to assist readers more familiar with the parameter symbols

used by Ratcliff and Tuerlinckx (2002).

Table Al

Parameters of the Pure and Extended Drift-Diffusion Models

Ratcliff et al. (2006)

Parameter Pure Extended terminology
Drift A A {(=4)
Threshold z b4 A (= 2 Zgpgacd)
Starting point X0 Xo 2 (= Zpogac: + X0)
Residual latency T, T T (= Tp)
Noise ¢ c s(=o0
Starting point variability — S, 5. (=s,)
Drift variability — Sp M (= s4)
T, variability — s 5 (= s,)

Note. 1In the left and middle columns are the parameter symbols used by Bogacz, Brown, Moehlis, Holmes, and Cohen
(2006); in the right column is the terminology used by Ratcliff and Tuerlinckx (2002).

(Appendixes continue)
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Appendix B

Accuracy and DT for Nonzero Starting Points

When starting point x,, is not O (i.e., not equidistant from both thresholds), the expressions for ER and DT are as
follows (Equations A43 and A44 in Bogacz et al., 2006), where IT denotes the probability of the more likely stimulus:
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Appendix C
Reward-Maximizing SAT for Models With Concave SATF

SATs are often conceptualized as points along a SATF. An
SATF defines the proportion of correct responses as a function of
mean RT (Luce, 1986). According to the theory of optimal DDM
parameterization, points along an SATF are selected in response to
changing stimulus probabilities, rewards, and RSI. Changes in the
SNR, in contrast, are predicted to change the SATF itself; we did
not investigate changes in SNR in this article.

For any model producing a smooth, concave SATF (i.e., in
which accuracy increases smoothly and monotonically with mean
RT but has a strictly negative second derivative with respect to
RT), the definition of reward rate in Equation 4 implies the
existence of a unique SAT that maximizes reward rate. This is the
case for the DDM but also for other models of decision making.

Equation 4 defines reward rate as follows, where ER is error
proportion, DT is average DT, T, is residual latency, and RSI is the
average RSI:

1 — ER
DT + T, + RSI'

R = (11

Let Acc represent accuracy: Acc = 1 — ER. Then an SATF is
given by Acc(DT), which we assume is strictly increasing and
concave as DT (and therefore RT) increases. From Equation 11,
we therefore have:

Acc(DT)

RR(DT) = ————
DT + T, + RSI

(12)

Because Acc(DT) is clearly bounded above by 1 (representing
perfect accuracy), whereas DT + T, + RSI grows without bound as
DT increases, RR (DT) approaches 0 as DT approaches infinity.

We can also assume that Acc(0) is near 0.5 (representing chance
performance). Therefore, RR (DT) either decreases monotonically
toward 0 as DT increases (meaning that it has a maximum at DT =
0), or RR (ﬁ) has one or more local maxima for DT ,).

To analyze how many possible local maxima exist, we take the
derivative of RR with respect to DT:

[ Acc'(DT) Acc(DT)
RR'(DT) = — SO — (13)
DT + 7, + RSI (DT + T, + RSI)
Setting RR’ (ﬁ) = 0, we get:
Acc’(ﬁ) B Acc(ﬁ)
DT + T, + RSI (DT + T, + RSI)?
— Acc(DT)
Acc'(DT) = (14)

(DT + T, + RSI)’

Equation 14 states that the local maxima or minima of RR must
occur at values of DT where the derivative of the SATF equals the
reward rate (up to a constant scaling factor involving the size of
rewards—for the present discussion, we assume that rewards have
a unit magnitude).

The second derivative of RR determines whether the zeros of
Equation 13 are local minima or maxima. The second derivative is
given by the following, where we set RT = DT + T, + RSI:

ﬁ”(ﬁ) _ Acc”  Acc’ Acc’ N 2Acc
~ RT (RT)> (RT)> (RT)?

B Acc”  2Acc’ N 2Acc

RT  (RT)> (RT)®

Acc”

RT

Because RT = DT + T, + @ > 0 and Acc”(DT) < 0 by
concavity of the SATF, RR”(DT) must be strictly negative, and
therefore any value of DT for which RR’ = 0is a local maximum.

By the assumed continuity of the SATF, any two neighboring
Jlocal maxima must be separatei bB local minimum, or else a
piecewise constant segment of RR (DT) is maximal. However, the
existence of such a segment would imply tha@”’ = 0 over that
segment, contradicting the assumption that RR” < 0.

For models that produce monotonically increasing SATFs that
are not concave, multiple local maxima are possible.

(by substitution of Eq.14).  (15)
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Appendix D

Data Fitting

Data in Experiments 1 and 2 were fit using the chi-square
fitting method of Ratcliff and Tuerlinckx (2002), implemented
in MATLAB software custom-written by the authors. We ex-
tended this method to incorporate upper bounds on certain
parameters during fitting, as well as to allow fitting of a mixture
model consisting of an RT distribution generated by the DDM and
a normal RT distribution with smaller mean and variance. Data in
Experiment 3 were fit in MATLAB with the Diffusion Model
Analysis Toolbox (DMAT) (Vandekerckhove & Tuerlinckx,
2007a, 2007b). Here we focus on the details of the fitting methods
used in Experiments 1 and 2.

Fit Error Function

In the chi-square fitting method of Ratcliff and Tuerlinckx
(2002), the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles are used to define
six bins of RTs, with the fastest RT bin and the slowest RT bin
each containing 10% of the total number of trials and the other bins
containing 20%. A given set of DDM parameters was then used at
each iteration of the fitting process (discussed later) to generate a
cumulative distribution function (CDF) for each of the two types
of responses.'! The CDF (computed for the extended DDM with
the freely available MATLAB function CDFDif.m described in
Tuerlinckx [2004]) is used to generate a prediction of the number
of trials expected within each bin. The chi-square error function is
given by the following equation:

6

X= 2 X

conditions i=1

(trials observed,;, — trials expectedy;,)?

trials expectedyy,

(16)

This fit error function was evaluated by Ratcliff and Tuerlinckx
(2002) in a study comparing the maximum likelihood method, the
chi-square method we use here, and a weighted least-squares
method applied to quantiles. Simulated data was constructed for a
set of parameter values, and the methods were evaluated for
computational speed, bias, and robustness to contaminants. Con-
taminants are responses not generated by the diffusion process
(perhaps because of failures to attend to the task). Lacking any
more informed model of what the RT distribution should be for
real contaminants, Ratcliff and Tuerlinckx (2002) simulated them
as RTs generated by the extended DDM, with an additional incre-
ment drawn from a uniform distribution; in fitting this simulated
data, they made the simplifying assumption that the contaminants
were drawn from a uniform distribution spanning most of the
observed RT range. The chi-square method applied to the extended
DDM—with an additional parameter intended to capture contam-
inant RT proportions—was the method they recommended: It was
faster and more robust than the maximum likelihood method and

less biased than the weighted least-squares method that they in-
vestigated.

We added four additional parameters to this extended DDM and
modified its first-passage time CDF before computing the fit error:
Three parameters were needed to make data from Experiment 2
fittable, and one was used to test the hypothesis that drift is
strategically adapted from condition to condition (thereby contra-
dicting the prediction of constant drift for an optimized DDM).
The first three parameters were the mean, variance, and mixture
weight of a normal distribution intended to model a nonintegrative
RT distribution; the fourth parameter defined an increment that
could be added to the single drift term that was fit across all
conditions.

Optimization Algorithm

To minimize the fit error over the space of parameter values,
Ratcliff and colleagues (e.g., Ratcliff & McKoon, 2008) typically
use the Simplex algorithm (Nelder & Mead, 1965). Tuerlinckx has
used a constrained optimization algorithm, NPSOL (Gill, Murray,
Saunders, & Wright, 1998) instead of Simplex (Ratcliff & Tuer-
linckx, 2002), which allows the user to constrain search over the
parameter space to a particular region and to supply information
about the function being minimized that speeds the search process.
However, Ratcliff and Tuerlinckx (2002) reported that this method
suffered from numerical instability problems and failures to con-
verge to minima.

Despite its demonstrated practical utility in a wide range of
problems, theoretical understanding of the convergence properties
of Simplex is limited (Lagarias, Reeds, Wright, & Wright, 1998).
It can fail to converge to a minimum even for convex functions in
two dimensions (McKinnon, 1998). In purely practical terms,
however, it was our experience that fitting with Simplex took
much longer than with the constrained optimization method im-
plemented in MATLAB’s fmincon.m function. The latter is the
method we used for the analysis in this article. Furthermore, as we
noted in the article’s introduction, it turned out to be quite useful
to constrain the variability parameters of the extended DDM to
provide some amount of control over parameter inflation. Con-
strained optimization approaches are designed for this type of
restriction, whereas constraining an unconstrained algorithm by
assigning high fit errors to undesirable parameter regions is an art.

" Ratcliff and Tuerlinckx (2002) referred to this function and its cor-
responding density as defective, indicating that the CDF (the integral of the
density) does not approach 1 as RT approaches infinity. The sum of CDFs
for the two responses, evaluated at infinity, does equal 1, however. The two
defective distributions can then be fit to correct and error distributions
separately (and these two distributions can be further subdivided into
favored and unfavored stimulus RTs in Experiments 2 and 3).

(Appendixes continue)
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For our problem, MATLAB’s fmincon.m automatically selected
its medium-scale settings. Under these settings, the fitting process
alternates between two phases. In the first phase, it estimates the
curvature of the error surface around the current search point in
parameter space using sequential quadratic programming. In the
second phase, it uses line search (related to Newton’s method) to
minimize the function along a line in parameter space selected on
the basis of the curvature estimate. Then the process repeats.

This algorithm has proven convergence properties for smooth
error functions. As a sum of (normalized) squares, the chi-square
error function is smooth as long as the expected number of trials in
the denominator of each term in Equation 16 does not approach 0
for any term in the sum.'? For fits of the extended DDM without
contaminants to RT distributions in individual conditions, fitting a
condition typically took less than 30 s on a 2.53-GHz Intel Pentium
IV with 512-KB cache, 533-MHz bus, and 512 MB of RAM, as
opposed to a typical fit time of several minutes for a Simplex
approach.

As noted by Ratcliff and Tuerlinckx (2002), convergence prob-
lems can indeed pose a difficulty for this approach; however,
judicious use of initial conditions and parameter bounds made
these problems manageable. For example, because it was clear that
the first mode in the bimodal, empirical RT densities of Experi-
ments 2 and 3 occurred well before 300 ms, an upper bound of 290
ms could be applied to the nonintegrative mean parameter during
fitting. The result was fast convergence to a value of 267 ms. In
contrast, when this bound constraint was not imposed, the fitting
algorithm was prone to wandering into a region of parameter space
that assigned high mean and variance to the normal component of
our mixture model; once this happened, it was extremely difficult
for the algorithm to recover, and searches usually terminated with
extremely high fit errors and nonsensical parameter estimates.

However, numerical instability may still affect the algorithm as
it is implemented in fmincon.m, because the error surface defined
by the x? function, although smooth in theory, appears to be quite
jagged in practice: Tiny changes in parameter values can create
extremely large jumps in the error, especially when data from
multiple participants is pooled together (presumably because the
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larger number of total trials resulting from pooling produces larger
expected bin counts for the fastest and longest RT bins, and
deviations from this expectation drive up the error dramatically).
In fitting the extended DDM, the default parameter settings for
fmincon.m were extremely effective; as noted, good fits were
achieved remarkably quickly.'?

Application of the Freedman—Diaconis Histogram Bin
Size Rule

For the histograms in Figures 7 and 12, we used a fixed-width
bin size governed by the Freedman—Diaconis rule (Freedman &
Diaconis, 1981) for minimizing the error between the histogram
and the actual density. This bin size rule adapts the bin width to
data from a given experimental condition according to the follow-
ing equation:

2 X Interquartile range

bin size = (17)

Number of observations'*’

Interquartile range is the difference between the first and third
quartiles. Because correct and error RTs were fit separately, mak-
ing the histograms for errors and correct responses comparable
required choosing which distribution to plot with this bin size rule
and then applying the same bin size to the other distribution as
well. Because there were far fewer error RTs in general, applying
the bin size derived from the correct RTs to the error RTs tended
to oversmooth the error RT data. We therefore applied the
Freedman—Diaconis rule to the error RTs and used the derived bin
size for both correct and error RTs.

'2 We followed the practice of Tuerlinckx (2004) and made sure that the
denominator was never below 0.00001, although to do so we took the
maximum of this small number and the expected bin count rather than
adding 0.00001 to all expected bin counts as done by Tuerlinckx.

13The DMAT MATLAB Toolbox (Vandekerckhove & Tuerlinckx,
2007a, 2007b) for fitting the DDM appears to operate faster still for typical
data sets, even relying on Simplex as its optimization algorithm, because of
efficient, low-level code optimization.

Appendix E

Participant 305

Here we examined performance by an individual participant to
demonstrate that the behavioral phenomena observed in pooled
performance data from all participants (e.g., bimodal response time
densities in Experiment 2) were not simply artifacts of pooling.

In Experiment 1, Participant 305 shifted from a relative empha-
sis on speed to a relative emphasis on accuracy in the 2-s RSI
condition compared with the 500-ms and 1-s RSI conditions.
Figure E1 plots RT densities for this participant from Experiments
1 and 2 that are consistent with nonintegrative responding (i.e., fast
responding with one response exclusively) for large stimulus-ratio
asymmetries II. In this figure, only data from the 500-ms RSI
conditions are plotted. As Il grows, the RT densities clearly
undergo a transition toward the signal detection density. Ulti-

mately, in the 90:10-ratio/500-ms RSI condition, the RT density is
essentially identical to the signal detection RT density.

Further evidence for nonintegrative responding comes from exam-
ining response totals and RTs on a trial-by-trial basis. Figure E2 plots
data from the first session of Experiment 2. Panel A plots cumulative
favored responses as a function of trial number. Dashed lines plot the
maximum possible cumulative total of favored responses within
each block of trials. Purely nonintegrative responding causes the
observed cumulative response plot to lie on top of the dashed line
(most clearly observed in Block 9, with RSI = 1 s and 90%
rightward stimuli); deviations from nonintegration cause the cu-
mulative plot to err toward the horizontal. Panel B plots RT as a
function of trial number. Dashed lines indicate the observed,
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decisions approaches that for the signal detection condition.
Transition from integrative to nonintegrative responding
(Practice) Transition from nonintegrative to integrative responding
D —
200 P
0 ‘{%’—’” ~ g \\‘;_;___—;—'—’——__:__’_:_“__
200 bkt | blk2 | blko | bIk10 | blk11| blk12| | blk13
-300
0 200 1,200 1,400 1,600 1,800
3

1,000

4
blk1 blk2 blk3 blk4 blk5 blk6 blk7 blk8 blk9 blk10 blk11 | blk12 blk13
RSI0.75 RSI=0.5 RSI 1 D2 RSI2 | RSI2 | RSI2 RSI 0.5 RSI 1 RSI 1 RSI2 | RSI2 RSI 0.5

0.5M110.5 1175 110.75 |I10.75|110.75| 110.9 | 110.9 11 0.9 Right 11 0.9 Right 110.6 110.6 | 110.6 11 0.6 Left

No bia: Right Left Left Right | Right | Left Right Left Left

0 | | | | i | |

0 200 400 600 800 1,000 1,200 1,400 1,600
Trial Number

Figure E2. Trial-by-trial performance data from Participant 305 in the first session of Experiment 2 (after participation
in the five sessions of Experiment 1). (A) Cumulative favored responses as a function of trial number. Dashed lines plot the
maximum possible cumulative total of favored responses. (B) Response time (RT) as a function of trial number. Dashed
lines indicate observed signal detection RT; superimposed solid, horizontal lines plot mean RT for the block. (C) The
proportion of errors within each block as a function of trial number; text indicates RSI and IT conditions in each block.
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Figure E3. Comparison of predicted and observed response proportions, response times (RTs), and error
percentages in all conditions of Experiment 2 based on unconstrained, extended drift-diffusion model fits of drift
and residual latency to performance of Participant 305 in Experiment 1. The horizontal axis in each plot denotes
the stimulus proportions (0.6 indicates a 60:40 ratio, 0.75 indicates a 75:25 ratio, and 0.9 indicates a 90:10 ratio).
The left column of plots corresponds to a mean response—stimulus interval (RSI) of 500 ms; the middle column
corresponds to a mean RSI of 1 s; the right column corresponds to a mean RSI of 2 s.

average signal detection RT; superimposed solid, horizontal lines
indicate the average RT for the block. Panel C plots the proportion
of errors within each block as a function of trial number; text
indicates RSI and II conditions in each block.

Block 7 (90:10 stimulus-ratio/500-ms RSI/rightward motion
favored) and Block 8 (90:10 stimulus-ratio/1-s RSI/rightward mo-
tion favored) both show almost exclusive rightward responding,
and responses are almost all near or below the average signal
detection RT.

In later sessions, this participant showed evidence of noninte-
grative responding in other conditions as well. This can be seen in
Figure E3. In this comparison of response proportions, RTs and
accuracy to the predictions of an optimally tuned DDM, Partici-
pant 305 also appears to have achieved nonintegrative responding
in the 2-s RSI condition with a 90:10 stimulus ratio. However,
given the fitted drift and residual latency terms, nonintegrative
responding was also predicted (but not exclusively produced) in
the 75:25-ratio/500-ms RSI condition.
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Appendix F

Comparison of Unconstrained and Constrained Fits
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Figure F1. Comparison of pure drift-diffusion model (DDM) fits, constrained/
extended DDM fits, and unconstrained/extended DDM fits in terms of harvesting
efficiency. One set of reward rate curves corresponds to each of the response—
stimulus interval values in Experiment 1. Unconstrained/extended fits are shown in
blue; constrained/extended fits are in red; pure DDM are fits in black.

Constraining the additional parameters of the extended DDM
during fitting as we have done forces the model to approximate the

pure DDM. This approach to fitting our data resulted in starting-
point and threshold values that were close to the optimal values, as
defined by analytical functions of the fitted drift and residual
latency values (Equations 6 and 7, respectively).

However, if unconstrained fitting of the extended DDM in fact
achieves unbiased estimates of parameter values along with a
reduced fit error relative to constrained fits—notwithstanding the
parameter correlation problem that we have noted—then it is
imperative to look for evidence of optimal SAT and response bias
in these unconstrained fit values as well. Figure F1 shows the
results of an unconstrained model fit in blue, a constrained model
fit in red, and a pure DDM fit (with variability parameters set to 0)
in black. In the top panel, the horizontal coordinate represents the
reward maximizing threshold values (Xs) and fitted threshold
values (Os) in each RSI condition; the vertical coordinate repre-
sents the average reward rate actually earned by participants in
each condition. In the bottom panel, the fitted thresholds are
plotted versus their optimal values.

The figure shows that, in all RSI conditions, unconstrained/
extended fitting leads to parameter sets whose threshold values (blue
Os) are much larger than the reward-maximizing values for the
extended DDM (blue Xs), as indicated by simulations (noise and
the flat maximum in the 2-s RSI condition make the position of the
optimal value determined by simulations somewhat imprecise). These
simulations show that more reward can be earned with the pure DDM
than with the extended DDM, as the analytically derived black curves
are greater than the numerically computed blue and red curves for the
extended DDM, except at threshold values smaller than optimal.

The mismatch between fitted and optimal values for the con-
strained/extended DDM (red Os and Xs, respectively) is less
pronounced. The mismatch between fitted and optimal values for
the pure DDM (black Os and Xs) is the smallest of all. Thus, the
choice of fitting procedure appears to determine whether the data
favor the hypothesis of nearly optimal strategic control of decision
making (at least when RSIs are greater than 500 ms), or, in
contrast, an hypothesis of suboptimal emphasis on accuracy over
reward rate in all conditions.
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