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I evaluate the pros and cons of a cognitive modeling approach based strictly on localist rep-
resentations by examining a sequential decision making architecture developed to model the
neural basis of problem solving. This architecture, comprising layers of graded-activation pro-
cessing units interleaved with layers of approximately binary units, seems not only amenable
to distributed representations in its graded layers, but actively in need of them in order to
support levels of model complexity on the scale of symbolic systems. The architecture employs
a key connectionist principle: that the semantics of a representation are defined by what is
connected to what. Because of this choice, however, the architecture requires a combinatorially
explosive number of localist units as problem complexity increases. I discuss the possibility of
preventing combinatorial explosion by binding low-level representations into high-level rep-
resentations through temporal synchrony, using the same dynamics that underlie decision
making in the architecture.

Keywords: Production system; neural network; diffusion model; binding; synchrony;
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1. Introduction

The distributed/localist dimension in the space of cognitive architectures paral-
lels the subsymbolic/symbolic dimension, in which the choice is between graded
and discrete numerical representations, respectively. In this paper, I describe a lo-
calist architecture that converts subsymbolic representations into symbolic ones
during problem solving. Solving a problem in this architecture reduces to making
a sequence of atomic decisions about where to go next in a problem space; each
decision converts graded evidence about where to go into an all-or-none decision
about the next node to visit in the problem space. I demonstrate that this ar-
chitecture, which accounts for interesting patterns of problem solving deficits in
patients with prefrontal brain damage Polk et al. (2002) and Parkinson’s disease
Simen et al. (2004), nevertheless suffers from extreme inefficiency in the use of neu-
ral resources: The need for unique localist units to code for conjunctions of other
active units grows combinatorially as problem complexity increases.

The psychological and neuroscientific study of perceptual decision making sug-
gests alternative representational mechanisms, however. Such research usually fo-
cuses on the translation of sensory information — which is represented in primary
sensory cortex in a presumably subsymbolic and distributed form — into discrete
motor actions, which (I presume) are mediated by symbolic/localist representations
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in primary or supplementary motor cortex. Much work in this area also suggests a
role for synchronous oscillations across distant brain regions during decision mak-
ing. I therefore conclude the paper by examining a particular implementation of
binding-by-synchrony (one approach to solving the ‘binding problem’). This im-
plementation may allow sufficient control over the time at which component rep-
resentations are active to build temporary conjunctions of localist representations,
and thereby avoid combinatorial explosion without sacrificing functionality. Most
importantly, it supports a form of self-organization in time: distinct concepts that
share components are by definition in conflict with each other, and this conflict
triggers a decision making process based on lateral inhibition to resolve it. This
resolution splits time into phases during which only one of the conflicting con-
cepts is active. The organization of which concepts are active when, however, is
determined entirely by interactions between the concepts themselves. This obvi-
ates any need for an external controller/sequencer somewhere else, and thus averts
the danger of an infinite regress of controllers.

2. Natural and artificial decisions, algorithms and automata

The power of the Turing machine architecture for computation makes it almost
irresistible as a framework in which to create cognitive models. Different physical
models of computation — e.g., the mind as an hydraulic system of pipes, pumps
and reservoirs, represented by differential equations — can themselves be emulated
using scientific computation techniques on a standard computer. Modeling cogni-
tion in this way requires more work than simply programming with propositional
logic, however; and if one’s goal is a model of problem solving, for example, the
payoff is often not great. Thus a strong emphasis on circuit-level descriptions of
cognitive architecture components strikes many AI researchers and some cognitive
psychologists as getting everything precisely backwards. Computer technology al-
lows a complete separation of levels of description: the physical level, involving
transistors and resistors, can be completely ignored by circuit designers who com-
bine off-the-shelf logic gates and clocks to design embedded circuits at the logic
level. Software engineers similarly benefit from never having to think about in-
struction pipeline characteristics in a CPU. Instead, they are able to focus on the
computational or algorithmic problem at hand, to use Marr’s terminology. If they
ever do have to move down a level (say, to speed up their code), then it is feasible,
but rarely necessary, to do so.

The ability to create symbolic cognitive architectures like ACT-R and Soar sim-
ilarly depends on the existence of an underlying platform that cleanly separates
levels of description. This standard computing platform, with its sequential read-
ing of a working memory buffer and algorithmic selection of rules, incorporates a
number of features that seem implausible as models of the circuit-level structure of
the brain, but that invisibly provide a great deal of power to the cognitive modeler.
(In fairness, recent work with ACT-R focuses more closely on circuit-level descrip-
tions, but low-level assumptions of sequential circuit design in digital electronics
still seem to be implicit in this work; cf. Stocco et al. 2010). More importantly, the
failure to date of AI to produce resilient, autonomous agents may (I conjecture)
derive from ignoring the fact that in the transition from animals like mice into an-
imals like humans, Turing-machine-like abilities emerged from a circuit structure
in which a clean separation between levels of description is likely impossible.

I will therefore sketch out my attempt to take the physical, circuit-level descrip-
tion of the brain seriously while specifying design principles for an architecture ca-
pable of symbolic processing in the form of problem space search. This architecture
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will appear distributed, stochastic and continuous at the lowest level of descrip-
tion, and approximately localist, deterministic and discrete at a higher level. The
mathematical language used to describe the lowest level will consist of stochas-
tic differential equations, while propositional logic will often suffice for describing
the highest level. The cognitive modeling sweet spot, I conjecture, consists of a
marriage of continuous, stochastic, subsymbolic process descriptions, via decision
making, with the modular, compositional, hierarchical structures that have been
the bread and butter of AI research. The result will unify random walk/diffusion
models of decision making, neural networks, and capacity-limited production sys-
tems, in a system that requires multiple levels of description: at the lowest level, in
terms of analog, asynchronous, stochastic processes guided by Hebbian and error-
driven learning combined with symbolic; at the highest level, in terms of rule-driven
processes guided by heuristic problem space search. Ironically, this marriage would
actually unite two distinct forms of decision making that Turing himself worked
on in separate contexts: 1) mathematician David Hilbert’s decision problem, which
was to determine whether an algorithm could be devised for automatically deciding
the truth or falsehood of any statement in a given mathematical language (answer:
no), and 2) deciding among hypotheses in the face of sequential, noisy samples of
evidence (specifically, cracking the German navy’s Enigma code in World War II;
see Gold and Shadlen 2002). Actually completing this unification of modeling tech-
niques will founder, as other attempts have in the past, on the binding problem,
in which it becomes problematic to assign simultaneously active representational
components to the appropriate representations in a parallel processing system. The
last part of the paper will discuss a mechanism for solving the binding problem
through temporal synchrony, which seems promising but remains work in progress.

3. Noise, evidence accumulation and thresholds

Finite state automata and regular expressions were proposed as a model of neu-
ral processing by Kleene (1956), just as behaviorism’s dominance began to wane
in psychology. Internal psychological states, unobservable as they appeared to be,
were considered by many psychologists at the time to be unworthy subjects of
study. Kleene’s state-preserving automata are equivalent to the essential control
device at the heart of every Turing machine, however, and are thus central to the
Turing machine’s capacity to capture something essential about human thought. I
claim that neural circuits, even in simpler organisms like mice and flies, must im-
plement finite state automata in order to support a suite of qualitatively distinct
behaviors, each of which can be appropriately triggered by environmental stimuli.
Nevertheless, they need not do so in the way that modern digital technology imple-
ments them in computers, with synchronous circuit updates, binary voltage levels,
low noise and a central system clock.

Instead, I propose a process of statistical hypothesis testing, with graded levels
of evidence that accumulates continuously over time, finally triggering the crossing
into one or another distinct state at some critical level of evidence (cf. Kopecz and
Schoner 1995; Usher and McClelland 2001). Such a process corresponds to passing
a bifurcation point in a dynamical system: a ‘point of no return’ for the underlying
continuous system that makes it appear digital and discrete when viewed macro-
scopically. An analogous switching process occurs in every digital, synchronous cir-
cuit, but I envision a process that is more subject to noise, uses no clock signal, and
is based on a linear superposition of evidence in favor of the various destination
states that can be reached from the current state. I propose that the transition
from graded levels of evidence into distinct states defines the transition from a
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subsymbolic to symbolic representational scheme, and furthermore may represent
a transition from distributed to localist representations in a system. What par-
ticularly distinguishes this approach from modern computing architectures is that
the evidence accumulation process can be quite extended in time, with rich dy-
namics driven by circuit structures acquired from experience by statistical learning
procedures, such as back-propagation or Hebbian learning.

A mechanism for implementing threshold-crossing detection is critical to this
endeavor. A simple strategy is to emulate the threshold mechanism that gener-
ates action potentials in the individual neural membrane: below a critical axonal
membrane potential, the potential is attracted toward a hyperpolarized state in
the absence of excitatory impulses; above a critical level, voltage-gated ion chan-
nels suddenly reverse the membrane potential’s attractor to a much higher value,
after which a second current again reverses the level of the attractor to the hy-
perpolarized potential. In principle, then, all of the subsymbolic processing under
discussion could take place in the dynamics of sub-threshold membrane potentials,
and decisions could be made by the firing of a single action potential. On a cogni-
tive time scale, however, such a scheme seems unlikely to work and, in any case,
appears unsupported by physiological evidence. Instead, a firing-rate code seems to
be used for making difficult perceptual decisions, and a classic model of the firing
rates of neural populations as simple nonlinear filters — classic neural network
units — seems more likely to supply the neural code for cognition (at any rate,
the neural code for processes that evolve over time scales much longer than the 10
msec timescale of the neural membrane).

Let us suppose then that a simple, sigmoidal activation function describes the
input/output relationship of a neural population (leaving noise out of the picture
for the moment), so that populations act like leaky integrators, or active, low-pass
filters: i.e., capacitors connected to operational amplifiers with a (mostly) linear
gain that falls off at very high input levels. Leaky integrators that excite them-
selves via recurrent excitation, and that strike a perfect balance between leak and
recurrent excitation, can act as perfect integrators over a non-negligible range of
inputs. If self-excitation is turned up beyond this critical level, such a population
exhibits bistability and hysteresis. Simply put, it acts like a switch, with only two,
widely separated levels of stable activation. More importantly, once it transitions
from one state to the other, it tends to stay there, until forced back to the other
state by a sustained change in inputs. In contrast, ideal switches that act as perfect
step functions, or Heaviside functions, produce disastrous chatter in noisy environ-
ments, transitioning from off to on and back arbitrarily quickly as inputs fluctuate.
In another important respect, this model of a neural switch differs from the CMOS
switches widely used in digital electronics in that it still displays an appreciable
amount of graded activation: although there exists a range of mid-level output
values that are transient and result in transition into ‘up’ or ‘down’ states, the
activation levels lumped into these non-contiguous states nonetheless show graded
changes in response to changes at all input levels other than those defining the sys-
tem’s bifurcation points. The switch is thus like an unusual dimmer control for a
light bulb — one that refuses to stay put within an intermediate range of settings,
so that the room can either range from pitch black to very dim, or from very bright
to blinding.

I and my colleagues have previously attached the outputs of a neural network
implementation of a drift-diffusion or Ornstein-Uhlenbeck model of decision making
to the inputs of a set of such switch mechanisms to obtain a complete decision
making model Simen and Cohen (2009). Without the energy barriers imposed
by switches, evidence accumulation in a decision making circuit would propagate
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through the system to motor actuators and produce graded levels of movement.
Switches hide the state of evidence accumulation from the world, allowing it out
only in an approximately punctate burst, like an action potential. With this model
of a threshold in hand, schemes for adapting speed-accuracy tradeoffs and response
biases via threshold adaptation become quite simple (e.g., Simen et al. 2006).

Most importantly, such bistable mechanisms allow relaxation oscillators to be
constructed that will underlie the temporal synchrony mechanism alluded to pre-
viously, as well as a switching architecture based on local, hand-shake procedures
that carry out complex, sequential behavior without the aid of a central system
clock.

4. Neural population model

The basic building block I propose is a stochastic neural network unit. I begin
its description by considering it as a deterministic system. At each moment, it
computes a weighted sum of its current inputs, then computes an exponentially
decaying average of recent weighted sums, and finally amplifies the result by a
gain function that is approximately linear (but which saturates at very low and
very high input levels). This quantity is broadcast to other units, over connections
whose strengths determine their relative contribution in those units’ weighted sum
computations. Formally, the output of the ith unit is Vi, the leaky integral of
summed input is xi, and the dynamics are defined as follows:

Ii =

n∑
j=1

wij · Vj , (1)

τ · dxi
dt

= −xi + Ii, (2)

and Vi(t) = f(xi(t)) = [1 + exp(−λ · (xi − β))]−1. (3)

Parameters λ and β determine the steepness and position of the sigmoidal activa-
tion function f , and τ determines the decay rate of exponential averaging (large τ
gives slow decay).

In addition to deterministic dynamics, I assume that noise enters the system
from units that have direct sensory inputs, and also from the units themselves. To
model these assumptions, I use stochastic differential equations, in which I represent
white noise with a useful abuse of notation as η ≡ dW/dt (multiplication by dt
then gives the standard notation dW in our equations; cf. Gardiner 2004). This
quantity represents the time-derivative of a Brownian motion, or Wiener process,
W (t).1 The standard deviation of η is 1, but can be changed to any value c by
multiplying by c. Here, we multiply η by the square root of the weighted input,
an assumption which is consistent with an even more microscopic level of neural
modeling: I assume that spiking neurons are Poisson processes, and that leaky
integrators model their population-level behavior (cf. Smith 2010). The variance
of sums of these independent processes is the sum of their variances. Thus we get
a noise standard deviation proportional to the square root of net input, with the
proportionality constant depending on the weights wij . Formally, then, the full,

1W in fact is non-differentiable, but it is the limit of a sequence of slightly smoother, differentiable noise
processes, so it can be used without danger.
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stochastic unit description is as follows:

τ · dxi
dt

= −xi +
(
Ii + cij

√
Ii · η

)
⇒ τ · dxi = (−xi + Ii) dt + cij

√
Ii dWij

⇒ τ · dVi ≈ (−xi + f(Ii)) dt + cij
√
Ii dWij (4)

(See Simen and Polk (2010) for justification of the last approximation, which moves
the noise term outside the nonlinear function f .)

This system can be numerically simulated on a computer (and perhaps be more
easily understood) as a discrete-time difference equation Gardiner (2004):

τ · Vi(t+ ∆t) ≈ Vi(t) + (−xi + f(Ii)) ∆t + cij
√
Ii
√

∆t. (5)

It is now critical for our purposes to consider the effects of recurrent excitation
of a unit by itself (wii > 0). The strength of this self-excitation determines which
of three, qualitatively distinct types of behavior a unit exhibits Simen and Polk
(2010). For wii < 1, the system acts like a leaky integrator; as wii grows, the leak
is reduced. When the self-excitation exactly balances the leak (wii = 1), the unit
acts like a perfect integrator (until it saturates). For wii > 1, the system is unstable
and is forced upward against the upper ceiling on its activation (1), or downward
toward its lower floor (0); thus it acts like a binary switch. Furthermore, such a
unit displays hysteresis, so that it can both trigger abrupt changes and also store
a bit. Fig. 1 shows the dynamics of such a unit. Equilibrium curves in Fig. 1a and
b are solid; velocities dV/dt are indicated by arrows and shading (light > 0, dark
< 0).

In general, leaky integration (weak self-excitation, indicated by a sigmoid symbol
in Fig. 1c) is useful because it low-pass filters its input, thereby removing much
of the high frequency noise contributed by noisy spiking and by the environment.
Perfect integration (balanced self-excitation, indicated by a rounded step-function
symbol in Fig. 1c) is needed for optimal hypothesis testing Bogacz et al. (2006).
Bistability (strong self-excitation, indicated by an S-shaped symbol in 1c) is needed
for triggering subsequent steps of sequential processes and for maintaining the
current state of working memory. Bistable units act as latches in digital electronics
and can store a 1 (upper gray region of Fig. 1d) or a 0 (lower gray region of Fig. 1d)
as long as input is held between A and B. This is because states above the dashed
curve converge to the upper solid curve, while states below it converge to the lower
solid curve. Bit-flipping during constant I is least likely when I = (A+B)/2.

5. Neural productions, timers and oscillators

Fig. 2 shows the basic building blocks of the proposed architecture; in the remainder
of the paper, I explain how each block functions, and show how the localist assump-
tions inherent in them allow for controllable sequential processing, but suffer from
a curse of dimensionality. The left column shows the 3 unit types (a,b,c). Simen
and Polk (2010) detail how a complete set of logic operations (AND, OR, NOT)
can be built from the bistable units in c by parameterizing their input strengths.
Panel d shows a simple if-then rule structure: the leaky integrator filters noise
from its inputs, and if the sum exceeds a critical level, the bistable unit switches
from (approximately) 0 to (approximately) 1. This is analogous to the process of
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Figure 1. a, b: A neural network unit’s rate of activation change (dV/dt) as a function of input I and
output V for units with fixed I and balanced (a) or strong (b) excitatory, recurrent connections. c:
‘Catastrophe manifold’ formed by the equilibrium curves of Eq. 3 as the self-excitatory, recurrent weight
strength wii ranges from 0 to 2. d: A latch based on hysteresis.

‘matching’ the contents of working memory (which can be made to depend on ar-
bitrarily many symbolic preconditions using a cascade of logic gates). The degree
of match may be an analog quantity, and whether this is sufficient to cause a bit
flip in the output unit determines whether the ‘production’, or if-then rule, will
‘fire’ Newell (1990). Furthermore, the weights on inputs to the if-stage may also
encode preferences between productions that have an equal degree of supporting
evidence.

If more than one production matches, however, there may be conflict between
them. At least at the motor output stage (e.g., SOAR’s ‘operators’), such conflict
must be resolved. Here I consider conflict resolution as a process of competition
between matching productions (Fig. 2 e), with the outcome biased toward selection
of the production with the strongest amount of preference-weighted evidence. Since
noise is everywhere, this reduces to a well-defined hypothesis testing problem, for
which simple, near-optimal algorithms exist. These algorithms — sequential prob-
ability ratio tests (SPRTs) — can be parameterized to maximize expected utility
in the case of two-alternative choices Bogacz et al. (2006), and can approximately
maximize utility for a greater number of competing alternatives McMillen and
Holmes (2006), Simen et al. (2010). For a difficult decision, the process of deciding
via lateral inhibition (a form of attractor dynamics) can be parameterized to im-
plement an SPRT. This requires only that the lateral inhibitory strengths between
input units equal -1. An example of these dynamics is shown in Fig. 3. There, the
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A: Leaky integrator D: Typical production F: Timer Circuit

G: Relaxation 
Oscillator

Start switch Ramp Trigger

B: Perfect integrator

C: Bistable switch

IF THEN

E: Conflict-resolving production

IF THEN

Figure 2. Basic building blocks. Arrowheads indicate excitation, circleheads inhibition. a, b, c: Elemen-
tary particles; arrows: excitatory inputs. d: Production topology. e: Conflict resolution via lateral inhibition
(circles: inhibition); inhibition between switches is optional. f: Interval timer. g: Relaxation oscillator added
to production output unit.

2D system in the bottom layer of units reduces to a single dimension (Fig. 3c),
along which a random walk to threshold occurs. The threshold is implemented by
attractor dynamics in the top layer of units, the dynamics of which are shown
in Fig. 3d. Thus, the firing of a single production is equivalent to a statistical
hypothesis test.
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A critical question facing the proposed architecture, however, is whether the
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timing of these firings can be coordinated and sequentialized without reference
to a central system clock. Our problem is the same as that facing digital circuit
designers, who have long relied on a central clock and synchronous updating to
preclude critical race conditions and other signal timing hazards. Our solution is
to use these production implementations to form processing bottlenecks, and to
use handshake completion signals between computing elements for asynchronous,
distributed timing control Simen and Polk (2010). The most difficult question is
whether we can implement productions of the form: If A, Then B and Not A.
Naively wiring up a system to implement such a production can cause critical race
conditions or metastability.

Our solution derives from the hysteresis properties of our bistable units. Fig. 4
shows that a sequence of such units can be wired up so that an input unit stays
active long enough to trigger an output unit, which in turn inhibits the input. If
the input unit did not resist this inhibition, it could fail to latch the output before
shutting off. Elsewhere I have detailed the specific conditions that ensure proper
sequential latching Simen and Polk (2010). To ensure that timing issues can be
handled, I use the timer circuit in Fig. 2 f to implement an analogue of the delay
gates used in digital logic. This mechanism activates a ‘start’ switch unit on the
left, then integrates that signal in a ‘ramp’ unit, weighted by the start-to-ramp
weight, until it triggers the ‘trigger’ unit to flip from 0 to 1. The delay duration is
equal to this threshold value divided by the start-to-ramp weight. These dynamics
are very similar to those implementing hypothesis-testing in Fig. 3, but now the
only evidence is the passing of time.
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Figure 4. A production that negates its own if-condition. Bottom layer: input signal (red). Middle layer:
IN unit activation. Top layer: OUT unit activation.

With these building blocks in hand, we can build arbitrarily complex circuits that
implement logic gates and finite state machines, and thus special-purpose produc-
tion systems, such as the Tower of London problem solver discussed at the end of
the paper. However, we still face the same critical problems facing all connectionist
systems: if the semantics of a representation depend on what is connected to what,
then how do separate representations share subcomponents? Or if their subcom-
ponents conflict, then how are the proper subcomponents bound with the proper
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parent representation? Temporal synchrony has been widely considered to be a
potential solution. The architectural assumptions are that whatever is simultane-
ously active refers to the same entity, and distinct entities share different oscillation
phases (cf. Hummel and Holyoak 1997). I implement these assumptions using the
same machinery that underlies productions which cancel their own if-conditions.

Fig. 2 g shows that for each production trigger, we can assign an inhibitor. If
a production fires, its output unit activates and triggers its own cancellation after
a controllable delay (depending on connection strengths). However, the firing of
a production can trigger a stored, hidden variable in a third bistable unit, which
forces reactivation of the production after the inhibitor falls silent. This process
repeats, triggering oscillations. When productions compete with each other, they
push their active periods out of phase with each other, as shown in Fig. 5. When
they do not, excitation causes them to entrain to the same phase. Thus conflicting
representations locally decide which gets to broadcast information globally. If we
allow for a plasticity signal that globally increases the learning rate of Hebbian
connection plasticity between units, and if we activate this signal only at critical
times, then we can burn in connections (possibly temporary connections) between
units simply by activating them.
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Figure 5. Relaxation oscillations among competing representations, allowing sharing of a single broadcast
channel. Each solid color corresponds to one representation’s bistable output unit; dashed curves correspond
to the output’s inhibitor.

6. Neural model of the Tower of London task

To demonstrate both the power and the weakness of the architecture currently
proposed (minus its temporal synchrony generators), I now give an overview of a
model of problem solving in the Tower of London task built within the architecture.
This model is illustrated in abstract form in Fig. 6. Each module represented by
an oval in that schematic consists of a two-layer, laterally inhibiting set of conflict-
resolving productions as in Fig. 2e. The input layer implements a high-dimensional
random-walk/diffusion process, and the second layer of switches commits the mod-
ule to one choice when a critical level of evidence is accumulated in the input layer.
It thereafter preserves the choice by exploiting hysteresis in the output layer of
(localist) switch units. Such propositional information is preserved indefinitely this



March 8, 2011 10:33 Connection Science SimenCompositionalConnectionism2011

Connection Science 11

Subgoal Generation 
Control Circuitry

Details in Simen et al. (2004)

LEGEND: 
(a) A three-column module with low self-excitation and lateral inhibition – the column of 
symbols (q0,q1,q2) next to it denotes the columns comprised by the module; 
(b) A similar module with strong enough recurrent excitation to latch onto its current value; 
(c) A winner-take-all module with strong enough lateral inhibition at input and output 
layers to converge on dominance by one column; 
(d) A delay module with color-coded delay magnitude (darker = longer); 
(e) A low threshold module. Modules can have any any combination of properties denoted 
by (b)-(e);
(f) Feedforward inhibitory or excitatory connections, or a bundle of such connections.

Latch

Delay Source

Inhibitory Connection

Excitatory Connection

Module

q0
q1
q2

q0
q1
q2

q0
q1
q2

q0
q1
q2

q0
q1
q2

WTA

Winner-take-all

a)

c)

d) e)

b)

f)

WTA WTA

WTA

WTA WTAWTA

red
green
blue
empty

Sense1 Sense2

Sense3

Sense4

Sense5

Sense6

WTA

WTA GoalDecide
red->1,...,red->6
green->1,...,green->6
blue->1,...,blue->6

WTAGoalGate

AboveSource InTarget FreePosition

WTA red->1,...,red->6
green->1,...,green->6
blue->1,...,blue->6

WTA WTA WTA

WTA MoveGate
red->1,...,red->6
green->1,...,green->6
blue->1,...,blue->6

WTA WTA

WTA

WTA WTAWTA

red
green
blue

Goal1 Goal2

Goal3

Goal4

Goal5

Goal6

NoMove1, 2, 3, 4, 5

Generate
Subgoal

Externally Provided 
Goals

Primary Sensory
Modules

New Subgoal
Generation

Logic

Environment

Subgoal

Move
Convergence Timer

Sense1-6, Goal1-6, and Start initialized 
at start of simulation

Current
Config

Goal
Config

Red
Green
Blue

1 2
3

4
5
6

Figure 6. Tower of London model schematic. Each oval is a multi-layer module as depicted in Fig. 2e.
The object of the game is to move the colored balls from a starting to a goal configuration in the minimum
number of moves possible.

way, until noise knocks it down or until sufficiently strong inhibition from elsewhere
in the model is received.

In the model problem solver, a set of Sensory modules, one for each position of
the gameboard, is initialized to (localist) patterns encoding the color of a ball at
that position, if any, and these representations then persist until reinitialized by
changes in the environment. They in turn excite the representations of legal moves
in a separate Move module devoted to action representations, and inhibit illegal
ones. Diffusion/attractor dynamics within the Move module results in the selection
of a single action for execution, completing the simulation of a simple production
of the form: ‘if the red ball is in position X, then place it in position Y’.

It is important to note how similar this choice process is to the type of perceptual
decision making processes discussed in, e.g., Ratcliff and McKoon (2008) and Usher
and McClelland (2001), and how different such a choice is from action selection by a
game-tree search algorithm (e.g., breadth-first search; cf. Russell and Norvig 1995).
It allows — indeed, demands — a random action selection time, and allows for the
weighted sum of influences of a host of representations throughout the model.

6.1. Goals and subgoals

In the Tower of London solver, one set of winner-take-all modules is dedicated to
the representation of externally defined goals and another to internally generated
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subgoals. Activation in the goal modules biases the competition taking place in
the Move module, favoring moves of one ball over the others. This biasing is just
another form of production, but the if-condition is semantically special: it repre-
sents a desired state of the environment. Further, the biasing strength of such a
production is insufficient to activate its then-condition without support from some
other module, as in the case of the Sensory module just discussed. Technically, this
Goal → Move excitation should be considered only a component of a rule of the
form: ‘if Goal is X and Percept is Y, then Do Z’.

6.2. Model performance

Timecourses of activation in key components of the model are shown in Fig. 7.
The problem, shown at the bottom of Fig. 6, requires five moves for solution and
therefore requires that some balls be moved to positions other than their final, goal
positions. Thus it requires the internal generation of subgoals for efficient solution.
The Sense modules, like the Goal modules, are initialized at the beginning of the
simulation and excite potentially legal moves. A winner, ‘Red to 4’ is selected at
time point A, and the corresponding unit in MoveGate is caused to rise to threshold,
achieving the move and wiping out the move-generating command in Move. At this
point, the simulated environment causes an update of the Sense modules, which
in turn extinguish any goal or subgoal activation pattern in the Goal system or
Subgoal which represent goals to create the current environmental configuration
(point B). This allows the next most preferred goal to be retrieved and worked on,
as can be seen in Subgoal at point C. At no point is the Convergence Timer system
involved.

Now the next goal, ‘Blue to 2’, which is unachievable, has been selected, and
this in turn generates a subgoal to remove an obstacle. Once a subgoal is selected
(‘Green to 5’, since Green is in the target position of the blue ball, at time point D),
the first element of the Convergence Timer sequence (NoMove 1) begins to ramp
up, and finally maximal activation reaches the last timer in the sequence at time
E (this also happens for the previous goal). This activates the Generate module
for generating a subgoal. Finally, the subgoal generation logic computes that the
ball above the green source ball is blue, at time F, and that the lowest position on
a peg which is neither the source nor the target of the goal is position 1 at time
G, and Subgoal responds to this voting at time H. The model continues on in this
way until eventually solving the problem in 5 moves, as is shown in the sequence
of moves selected by the model.

7. Curse of dimensionality with a localist representational scheme

The Tower of London model presented above suffers from an inability to scale up
to larger problem spaces. The Move module represents moves with a set of localist
units, each of which encodes one of the 18 unique pairings of a ball color and
a target position for that ball. As the number of board positions increases, this
scheme requires a linear increase in resources; as the number of both game pieces
and positions increases, a combinatorial explosion of resource requirements occurs.

One way to combat this explosion is to combine localist representations of color (3
values) with representations of target positions (6 values) in a temporal synchrony
code as previously described. Under this scheme, colors and positions active at the
same time represent a given move. This amounts to a very limited move toward a
distributed form of representation, but the payoff could be quite substantial.
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Figure 7. Time course of Output unit activation in most modules of the model during the solution of a
five-move-minimum problem, depicted in the Environment panel at the bottom of Fig. 6. Delay between
onset of activation in NoMove1 and NoMove5 defines the time window in which a move can be selected
before a subgoal is generated. This delay increases as Input → Delay inhibition is weakened, producing
the model’s latency impairment.

8. Discussion

The type of localist system used here to implement finite state automata and
limited production systems offers more of the type of sequential decision-making
expected from AI programs than is typical in a neural network. However, noth-
ing here should be taken to preclude the kind of subsymbolic computation that is
the hallmark of parallel distributed processing models. The connection strengths
in the Tower of London model were designed to trap the system into a rigid se-
quence of step-by-step decisions, as an exercise in showing how closely automata
(i.e., memory-limited Turing machines) could be emulated, while remaining com-
mitted to fundamentally subsymbolic decision making at the model’s core. Greater
flexibility could be achieved by allowing the sequencing to fall apart with some
probability, and it seems possible that many of the distinct localist representations
could be multiplexed onto a smaller number of units.

More work would be needed to determine the scope of the proposed approach to
dynamic symbol and rule creation, to the implementation of a data type system
such as exists in ACT-R and Soar, and to the binding problem more generally. With
enough additional assumptions about the structure of the basic building blocks, of
course, it would be possible to translate between any given symbolic architecture
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and an architecture built from the components we have outlined. This must be the
case in a trivial sense because the components used here are equivalent to circuits of
resistors, capacitors and transistors — the building blocks of modern computers.
Which additional assumptions are actually justified for cognitive modeling will
require a great deal of empirical research, but a program of purely theoretical
exploration that focuses on the emergence of a higher level of description from a
lower level seems to me to be a critical enterprise nevertheless. Attempts to unify
modeling approaches across levels are certainly not destined to succeed, but even
their failure is likely to be instructive.

In this case, the failure is clearly one in which a combinatorial explosion of localist
representations occurs as problem complexity increases. A possible remedy exists
in dynamically binding together inherently localist representations into distributed
complexes whose simultaneous activation represents a given entity at a particular
phase of an oscillation. These representations would then feed back into the selec-
tion of a localist representation in the process of making the next in a sequence
of decisions. The processing dynamics of such an architecture thus amount to a
continuous alternation between localist and distributed forms of representation —
a kind of dynamics that seems worthy of further investigation.
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