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Abstract

Optimal performance in two-alternative, free response decision-making tasks can be achieved by the drift–diffusion model of decision making
– which can be implemented in a neural network – as long as the threshold parameter of that model can be adapted to different task conditions.
Evidence exists that people seek to maximize reward in such tasks by modulating response thresholds. However, few models have been proposed
for threshold adaptation, and none have been implemented using neurally plausible mechanisms. Here we propose a neural network that adapts
thresholds in order to maximize reward rate. The model makes predictions regarding optimal performance and provides a benchmark against which
actual performance can be compared, as well as testable predictions about the way in which reward rate may be encoded by neural mechanisms.
c� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and background

A tradeoff between speed and accuracy is one of
the hallmarks of human performance in cognitive tasks.
Typically observed in controlled behavioral experiments in
which participants are encouraged to respond quickly, the
concept formalizes the common sense notion that rushing
produces more mistakes. Despite the pervasive nature of this
phenomenon and the long-standing recognition of it, relatively
little research has addressed how organisms address the balance
between speed and accuracy. Nevertheless, any successful
model of the physical mechanisms underlying decision making
will ultimately need to account for the speed–accuracy tradeoff:
why does a tradeoff occur at all, and how do organisms change
that tradeoff as conditions change?

In abstract models of decision making, especially those
addressing two-alternative forced choice (TAFC) tasks, the
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speed–accuracy tradeoff has traditionally been explained in
terms of a task-dependent decision criterion, or threshold for
termination of the decision-making process. This process is
typically described as a progressive accumulation of evidence
for each of the alternatives, the decision being made when the
evidence in favor of one alternative versus the other exceeds
the threshold (Laming, 1968; Luce, 1986; Ratcliff, 1978). If
the threshold is low, the decision will be made quickly, but
will be subject to noise. If the threshold is high, the decision
process will take longer but will have greater time to ‘average
out’ the effects of noise and therefore be more accurate.
While a number of neural network models have addressed
the mechanisms underlying TAFC task performance (e.g.,
Botvinick, Braver, Barch, Carter, and Cohen (2001), Brody,
Hernandez, Zainos, and Romo (2003), Grossberg and Gutowski
(1987), Usher and McClelland (2001) and Wang (2002)),
thresholds in these models have typically been modeled simply
as assigned parameters rather than as neural mechanisms in
their own right.

Here we propose an explicit set of neural mechanisms
by which thresholds may be implemented and adapted to
maximize the reward rate. We do this by building on existing
models of TAFC decision making that involve competing
accumulators of evidence, one for each possible action. To each
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Fig. 1. A: The two stimulus distributions. B: Sample paths of a drift–diffusion process. C: Long-tailed analytical RT density (solid curve) and simulated RT
histogram (top), correct RT histogram (middle), error RT histogram (bottom). D: Time courses of noise-free, mutually inhibitory evidence accumulation units with
sigmoid activation functions. E: The sigmoid activation function. F: A smoothed sample path of mutually inhibitory accumulator activations in the (y1, y2)-phase
space showing rapid attraction to a line (the ‘diffusion plane’) followed by drift and diffusion in its neighborhood.

accumulator we add a mechanism for implementing a response
threshold: a unit with a high-gain, sigmoidal activation function
that approximates a step function. We propose that such units
control response initiation, and that they are triggered by critical
levels of accumulated evidence in the accumulator units. We
then define an algorithm for modulating thresholds and describe
its implementation using a neurally plausible mechanism. The
model consists of a set of stochastic differential equations
that is equivalent to a classic connectionist recurrent neural
network with five units. In Sections 2 and 3 we review relevant
background before describing the model in Sections 4–6. We
conclude with a discussion in Section 7.

2. The drift–diffusion model (DDM)

Sequential sampling models of decision making have long
provided accounts of many regularities in response time (RT)
and accuracy data in choice–reaction experiments (Luce, 1986).
In sequential sampling, the stimulus is assumed to be a
sequence of samples from one of two possible distributions,
as, for example, in Fig. 1A. To determine which distribution
is actually generating the stimulus, sampling is repeated and
evidence in favor of one or another hypothesis is accumulated
until a response criterion has been reached. Speed–accuracy
tradeoffs can be explained in such models by shifts in the
response threshold toward or away from the starting points of
the decision variables: closer thresholds mean shorter RTs and
higher error rates on average (Laming, 1968; Ratcliff, 1978).

In random walk versions of TAFC sequential sampling
models, each evidential increment for one hypothesis reduces

the evidence in favor of the other so that there is only a single
decision variable: the difference in accumulated evidence for
each hypothesis. (Fig. 1B shows this variable plotted against
time for four different decisions. Fig. 1C shows the resulting
response time distributions over many decisions.) Steps in the
random walk are equivalent to increments of the total log-
likelihood ratio for one hypothesis over the other, making the
model equivalent to the sequential probability ratio test (SPRT)
(Laming, 1968). This is theoretically appealing as a starting
point for investigating the role of reward in decision making,
because the SPRT is optimal in the sense that no other test
can achieve higher expected accuracy in the same expected
time, or, conversely, reach a decision faster for a given level of
accuracy (Wald & Wolfowitz, 1948). However, the SPRT does
not specify the optimal threshold for maximizing other values
of potential interest, such as reward rate.

The drift–diffusion model (DDM) (Ratcliff, 1978; Smith
& Ratcliff, 2004; Stone, 1960) is a version of the SPRT
in which stimuli are sampled continuously rather than at
discrete intervals. The difference between the means of the
two possible stimulus distributions (see Fig. 1A) imposes
a constant drift of net evidence toward one threshold, and
the variance imposes a Brownian motion that may lead to
errors. In monkeys, the continuously evolving firing rates of
neurons in the lateral intraparietal sulcus (area LIP) have
been related to competing accumulators that approximate the
drift–diffusion process in oculomotor tasks (Gold & Shadlen,
2000, 2001; Roitman & Shadlen, 2002; Shadlen & Newsome,
2001). Similar findings have been reported for frontal structures
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responsible for controlling eye movements (Hanes & Schall,
1996). Importantly, as shown in Section 3, the expected reward
rate can be computed for the DDM (Gold & Shadlen, 2002),
allowing learning mechanisms to be analyzed in terms of a
well-defined optimization problem (Bogacz, Brown, Moehlis,
Holmes, & Cohen, in press).

The DDM is defined as the stochastic differential equation
(SDE)

dx = Adt + cdW, (1)

where A is the signal strength, dW denotes increments of an
independently and identically distributed (i.i.d.) Wiener (white
noise) process and the factor c weights the effect of noise. At
any given moment, the distribution of possible positions of a
particle moving in one dimension and governed purely by a
Wiener process is given by a Gaussian distribution whose mean
is the starting point of the particle (in our case, the decision
variable), and whose variance is equal to the time elapsed since
the start of the process. Brownian motion of this type causes
diffusion of a substance within a liquid, from whence comes
the term ‘diffusion’ in the name of the model. Nonzero drift A
contributes a tendency for trajectories to move in the direction
of the drift, producing a corresponding linear movement in the
mean of the particle position distribution over time. Below, we
will use the terms ‘drift’ and ‘signal’ interchangeably.

For models of this type to explain effects that are observed
in human performance – including the speed–accuracy tradeoff,
sequential effects such as post-error slowing, and speeded
response to frequent stimulus alternations and repetitions
(Luce, 1986) – their parameters must be adaptive on a short
time-scale. Traditionally, parameters have been inferred by fits
to behavioral data, and additional degrees of freedom have been
added to models to explain different behavioral phenomena
(e.g., Ratcliff and Rouder (1998)). However, in order to go
beyond identifying the relevant degrees of freedom and toward
the principles that govern the selection of specific parameter
values, several questions left unanswered by this approach
must be addressed. For example, on what basis do subjects
select particular parameter values of the decision process
(e.g., starting point or initial value of the decision variable,
and threshold for termination)? Are subjects behaving so as to
minimize errors, to maximize reward rate, or to do something
else altogether? How are their parameters modified in response
to ongoing experience? Only a limited number of studies have
addressed these questions and, to our knowledge, none have
addressed the question of neural implementation.

Below, we propose a neural network model that explains
how the decision threshold can be adapted (and a tradeoff
between speed and accuracy chosen) in order to maximize the
reward rate over multiple trials. This is based on a simple neural
network model that implements the DDM, as described in the
next section.

2.1. Neural implementation of the DDM

The accumulation of evidence in the DDM can be
approximated by a simple neural network with two ‘decision’

units, each of which is assumed to be preferentially sensitive
to one of the stimuli and also to be subject to inhibition
from the other unit (see Fig. 1D), as proposed by Usher and
McClelland (2001) (cf. Bogacz et al. (in press) and Gold and
Shadlen (2002)). Each unit has a leak term, and therefore
accumulates evidence for its corresponding stimulus subject to
decay over time, while competing with the unit representing the
other decision alternative. We and others have shown that, with
suitable parameter choices, this model closely approximates the
DDM.

Specifically, the evolving activation of each unit (indexed by
i) is determined by an SDE, the deterministic part of which is

ẏi = �yi � �y j + Ii , (2)

where Ii is the input, usually assumed to be a step function
of time (corresponding to stimulus onset) and ��y j represents
inhibition from the other unit(s). With the stochastic component
of the activation function included, the pair of units is governed
by

dy1 = (�y1 � �y2 + I1)dt + cdW1, (3)
dy2 = (�y2 � �y1 + I2)dt + cdW2. (4)

Here we assume linear or piecewise linear activation functions
for ease of analysis (we will abandon this when we discuss
threshold-crossing detectors, a case in which nonlinearity is
critical). This assumption provides a useful approximation
to a more realistic, sigmoid function (Cohen & Grossberg,
1983; Freeman, 1979) and is also consistent with the idea
that attention acts to place processing units in their central,
approximately linear range, where they are most sensitive to
afferent input (Cohen, Dunbar, & McClelland, 1990). Sigmoids
saturate near 0 at a small, positive baseline value, and also
near a finite maximum which is typically rescaled to 1,
thus avoiding the implausibilities of potentially unbounded or
negative activations. For such units each equation of (3) and (4)
takes the form

ẏi = �yi + � (��y j + Ii ) + cdWi , where

� (s) = 1
1 + e��(s�� )

. (5)

Summing the noise-free linearized equations (3) and (4), we
find that solutions approach an attracting line y1 + y2 = (I1 +
I2)/(1 + �) exponentially fast at rate 1 + �. Differencing them
yields an Ornstein–Uhlenbeck process for the net accumulated
evidence x = y1 � y2:

dx = [(� � 1)x + I1 � I2]dt + cdW. (6)

If leakage and inhibition are balanced (� = 1) this becomes the
DDM (Eq. (1)) with A = I1 � I2 representing the difference in
inputs. See Bogacz et al. (in press), Brown et al. (2005) and
Holmes et al. (2005) for further details and verification that the
nonlinear system approximates this behavior.

Fig. 1F shows the evolution of the activations y1(t) and
y2(t) over time. After stimulus onset, the system state (y1, y2)
approaches the attracting line along which slower, diffusive
behavior occurs as the state approaches one or another
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boundary under the influence of the noisy signal. Projection
of the state (y1, y2) onto this line yields the net accumulated
evidence x(t), which approximates the DDM as shown in
Fig. 1B.

3. A free-response, two-alternative forced choice task

To investigate the hypothesis that speed–accuracy tradeoffs
are driven by a process of reward maximization, we consider an
experiment in which subjects try to determine the direction of
motion of moving dots on a screen, as in Roitman and Shadlen
(2002). They are free to respond at any time after stimulus
presentation, and a response terminates the stimulus. Initial
results from such an experiment suggest that people adapt their
speed–accuracy tradeoffs in a manner consistent with the goal
of maximizing reward, and that this adaptation can happen quite
quickly (Bogacz et al., in press; Simen, Holmes, & Cohen,
2005). People can also adapt their speed–accuracy tradeoffs in
similar tasks in response to explicit instructions (Palmer, Huk,
& Shadlen, 2005).

To provide a benchmark against which to measure evidence
of adaptive behavior, we first describe optimal performance
under this experimental paradigm. Assuming a constant rate of
trial presentation, the expected reward rate over a sequence of
trials in which correct responses are rewarded by 1 unit and
errors by 0 can be expressed as follows (Gold & Shadlen, 2002):

RR = 1 � ER
DT + T0 + RSI

. (7)

Here ER is the expected error rate (proportion of errors),
DT is the decision time, T0 is the residual latency (non-
decision-making component of response time comprising
stimulus encoding and motor execution times), and RSI is the
response–stimulus interval (wait time from the last response to
the next stimulus onset).

For the DDM, ER and DT , and hence RR, depend only on
the signal-to-noise ratio A/c and threshold-to-signal ratio z/A,
and we shall assume that these two parameters, as well as T0
and the RSI, are held fixed within each block of trials. The
following analytical expressions are derived in Busemeyer and
Townsend (1993) (cf. Bogacz et al. (in press) and Gardiner
(1985):

ER = 1
1 + e2Az/c2 , (8)

DT = z
A

tanh
Az
c2 , (9)

and substituting them into Eq. (7) gives

RR
✓

z
A

,
A
c

◆

= 1
�
T0 + RSI + z

A

�
+

�
T0 + RSI � z

A

�
exp

⇣
�2

⇣
A2

c2

⌘
· z

A

⌘ .

(10)

Fig. 2 shows the expected reward rates given by Eq. (10) as
a function of threshold z for various values of RSI (Fig. 2A),

Fig. 2. A: Expected reward rate as a function of threshold for three different
RSI conditions, with noise and drift held constant. B: Expected reward rate for
several noise values, with RSI and drift held constant. C: Expected reward rate
for a range of drift values with RSI and noise held constant.

noise (c; Fig. 2B) and drift rate (A; Fig. 2C) (Bogacz et al.,
in press). For all values of RSI, noise and drift, this function
is smooth and has a unique maximum, indicating that there
is a single optimal threshold for maximizing the reward rate,
and that a gradient ascent algorithm can be used to find this
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Table 1
Hill-climbing algorithm for threshold adaptation that maximizes the reward rate; after Myung and Busemeyer (1989)

Step Instruction

1 Estimate the reward rate at an initial threshold
2 Randomly take a step upward or downward in threshold value
3 Estimate the reward rate at the new threshold
4 Compute the difference in reward rate estimates
5 Divide the difference by the size (or sign) of the change in threshold value to get an estimate of the gradient of the reward rate curve
6 If the estimated slope is positive, take another step in threshold value in the same direction; else take a step in the opposite direction; go to (3) and repeat.

optimum (although this approach faces some problems that we
will consider below).

In each plot, a broken line connects the peaks of the
reward rate curves, showing the reward rate and corresponding
thresholds associated with optimal performance for different
values of the DDM parameters (the ‘envelope of the optima’ in
Fig. 2). Thus, any mechanism that seeks to optimize the reward
rate for this decision process must be able to adapt its threshold
to the values indicated in the plots in response to changes in
task variables.

There is empirical evidence that human participants,
performing well-practiced tasks, are capable of such adaptation
over relatively short intervals (e.g., in as few as 5–10 trials)
following a change in task conditions (Bogacz et al., in
press; Ratcliff, Van Zandt, & McKoon, 1999). Several theories
have been proposed for how such adaptations may occur
(e.g., Busemeyer and Myung (1992), Erev (1998) and Myung
and Busemeyer (1989)). However, these have typically been
described in terms of discrete updating algorithms (for an
example, see Table 1). While such algorithms provide a useful
abstract specification of the component processes required for
threshold adaptation, several challenges arise when considering
how they may be implemented.

First, any reasonable reward rate estimation process takes
time, but algorithms like that in Table 1 assume that
threshold changes are made at discrete intervals. It is therefore
undetermined how long the system should wait at a given
threshold in order to develop a reasonable estimate of the
associated reward rate before making a modification: with too
few trials the estimate will be poor; with too many, convergence
will be slow. Second, there is the question of step-size selection:
step sizes that are too large cause oscillation of the threshold
around the optimum value; step sizes that are too small again
cause slow convergence. This problem can be addressed by
introducing additional mechanisms that progressively reduce
the step size, but this adds complexity to the model. These
algorithms also typically require a memory of old reward
rate values, and a means to compare new and old values in
order to compute gradients. In the sections that follow, we
describe a neural network model that addresses these issues.
The model operates in continuous time, requires no explicit
value comparison mechanisms, and achieves rapid and stable
adaptation to threshold values that are nearly optimal.

We begin by describing an implementation of a neural
network mechanism for detecting threshold crossing. We then
describe a mechanism for reward estimation. Finally, we

demonstrate how the latter can be used to adapt the threshold
mechanism in order to maximize the reward rate.

4. Thresholds as an affine function of reward rate

The threshold in the DDM is a step function applied to the
accumulated evidence (for evidence less than the threshold, the
output is 0; for evidence greater than the threshold, the output
is 1). In order to implement such a crisp function in a neural
network, a McCulloch–Pitts neuron (McCulloch & Pitts, 1943)
can be used, or an approximation based on a sigmoid unit with
strong gain (see Fig. 3A). Inputs that fall below the inflection
point of the curve will fail to activate the unit, while those
that fall above it will activate the unit maximally. The effective
threshold can be manipulated by providing a constant input
(or bias) to the unit, with a positive bias in effect shifting the
function to the left (decreasing the threshold), and a negative
bias shifting it to the right (increasing the threshold).

In our model, subthreshold levels of excitation provided
to threshold units from non-evidence-accumulating units will
act to reduce the effective threshold with respect to the
accumulators. An input x > 0, scaled by a positive synaptic
weight w, reduces the effective threshold by wx . Thus, if a
level zmax of evidence is required for threshold crossing in the
absence of additional excitation, the level drops to zmax � wx .
This defines an affine function of x (a linear transformation
plus a constant): precisely the transformation required by the
abstract threshold adaptation algorithm described in Section 6.
Accordingly, our algorithm may be implemented by connecting
one or more additional units to the threshold detectors with
appropriate synaptic weights w and by setting the bias (� in
Eq. (5)) of the threshold detectors to zmax (see Fig. 9). We shall
further discuss implementation, and possible neural substrates,
in Sections 6 and 7.

5. Estimating reward rate

The threshold adaptation algorithm to be described in
Section 6 seeks to optimize performance in the TAFC task
by using a running estimate of the current reward rate to
modulate behavior. Here we show how that estimate of reward
rate can be computed by a linear filter or ‘leaky integrator’
that is incremented in response to reward impulses s(t) while
decaying continuously over time (as in, e.g., Sugrue, Corrado,
and Newsome (2004a)). The estimate, r(t), evolves according
to

ṙ(t) = 1
k

· (s(t) � r(t)). (11)
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Fig. 3. A: Thresholds can be implemented by a simple step function, or McCulloch–Pitts neuron (McCulloch & Pitts, 1943), which in turn can be approximated
by a sigmoid with strong gain. A threshold can be reduced from zmax to zmax � wr by giving the unit additional excitation wr , representing weighted reward rate,
so that evidence need only be accumulated to this level to produce a response. B: Threshold represented as a linear function of reward rate. C: By exchanging the
vertical and horizontal axes, this prescription for threshold setting based on reward rate can be compared to the predicted reward rate as a function of threshold.

Fig. 4. Reward rate estimate r(t) (sawtooth curve) in response to a sequence of short reward pulses s(t) (gray rectangles). Here the rewards are pulses of height
1 and width 1. In both cases the estimated reward rate oscillates around the true frequency of reward pulses, shown by the dotted line. Left panel: slow pulse rate;
Right panel: fast pulse rate.

Thus, r(t) at a given time is an exponentially-weighted time-
average of the instantaneous reward signal s(t) in which the
time constant k determines the speed of adaptation to changes
in s(t). Following a step change in s(t), r(t) approaches s(t)
exponentially at rate 1/k. More generally, large values of k
attenuate high frequency fluctuations in s(t) (Oppenheim &
Willsky, 1996). Discrete rewards can be modeled in continuous
time as a sequence of narrow pulses or Dirac-delta impulses
(see Fig. 4), in which case r(t) will approach the steady state
mean of the reward rate.

Eq. (11) computes a continuous version of the time-
discounted averaging usually seen in discrete-time reinforce-
ment learning algorithms (cf. Doya (2000)). The averaging of
Eq. (11) may be computed exactly by a linearized connectionist
unit (Eq. (5)) in which recurrent self-excitation of strength k�1
is balanced against an activation function of slope 1/k, as can
be seen by simple algebra:

ẏ(t) = �y(t) + 1
k

· [s(t) + (k � 1) · y(t)]

=
✓

k � 1
k

� 1
◆

· y(t) + 1
k

· s(t)

= 1
k

· (s(t) � y(t)). (12)

A single unit can therefore compute the reward rate estimate
required by the threshold adaptation algorithm. The use of a
sigmoid rather than a linear activation function would make
the relationship of Eq. (12) to Eq. (11) approximate rather than
exact.

6. Threshold adaptation algorithm

We are now in a position to describe an algorithm that builds
on the DDM of Eq. (1) and the reward rate estimator of Eq. (11).
The algorithm models the DDM threshold as an affine function
of a continuously evolving reward rate estimate, as suggested in
Section 4. This is implemented in a neural network by exciting
the threshold detector of Fig. 3A in proportion to the reward rate
estimate. The resulting system has an attractor near the optimal
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Fig. 5. A: Threshold selection after a single trial of the discrete-time description of the algorithm. B: Convergence to nearly optimal threshold after four trials.

threshold across a range of RSI conditions, and its large domain
of attraction makes it robust to noise in reward rate estimates
and in the activation of threshold and accumulator units.

6.1. Discrete time description

The algorithm proposed below can be understood most
easily by first considering the discrete time version illustrated
in Fig. 5. Suppose one starts with an arbitrary threshold value,
Thresh1, as in Fig. 5A. The appropriate curve from Fig. 2
specifies the expected reward rate RR1 at that threshold value.
After the first trial, Thresh1 is updated in response to a new
estimate of the reward rate (based on how long the trial took
and whether it produced a reward or not) by mapping RR1 to
Thresh2 by the affine transformation. The process is repeated
to compute RR2, Thresh3, etc., and progress can be traced by a
staircase or ‘cobweb diagram’ (cf. Jordan and Smith (1999)), as
indicated in Fig. 5B. Given the unimodal shape of the expected
reward rate function and the slope of the transformation line,
rapid convergence to their unique intersection occurs, and
we note that step sizes adapt automatically, as shown by the
decreasing size of the steps in Fig. 5B as the intersection is
approached.

To obtain near-optimal performance, the transformation line
must intersect the reward rate curve at or near its apex. Further
on, we suggest that this line can be chosen to approximate the
relationship between threshold and optimal reward rate over a
range of task parameters (see Fig. 6), and that this line itself
may be subject to adaptation over longer time scales.

6.2. Continuous time system

We define the continuous time system as a set of SDEs
augmented by conditions for threshold crossing and decision

Fig. 6. The affine function that translates reward rate estimates into threshold
produces the best performance when it approximates the envelope of optima
(dashed curve), because it intersects the expected reward rate curves near their
peaks for a range of RSI conditions. Different ranges of RSI conditions require
different affine approximations, and the function is assumed to adapt slowly in
response to RSI conditions experienced over a longer time scale.

variable resetting:

dx =
⇢

Adt + c1dW if RSI(t) = 0
0 if RSI(t) = 1 (13)

x = 0 if RSI(t) = 1 (14)

dr = 1
k

· (�r(t) + R(t))dt + c2 dW (15)

z(t) = max(0, zmax � w · r(t)) (16)

R(t) =
⇢
�(t � t 0) if reward present at time t 0

0 otherwise (17)

⌧ = time of last threshold crossing (18)
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RSI(t) =
⇢

1 if |x | � z or t � ⌧ < RSImax
0 otherwise. (19)

Here x (Eqs. (13) and (14)) is the decision variable in the
DDM, r in Eq. (15) is the running estimate of reward rate,
and z in Eq. (16) is the threshold. Eqs. (13), (14) and (19)
model the effects of RSI (which impacts reward rate) as well
as the assumption that the decision variable starts at the origin
on each new trial.3 Specifically, when a stimulus is present,
the RSI variable is set to 0 (Eq. (19)) and first-passage of the
decision variable x beyond either threshold ±z is taken as the
time of decision, ⌧ (Eq. (18)). At this point, Eq. (19) specifies
the response–stimulus interval RSImax for the next trial, and Eq.
(13) resets the decision variable to 0. For correct responses, Eqs.
(15) and (17) apply a Dirac-delta impulse to the reward rate
estimator, which otherwise decays exponentially (see Fig. 4).
The threshold z is determined entirely by the reward rate
estimate r via the affine function of Eq. (16). In Section 6.4
we show that the continuous system (Eqs. (13)–(19)) shares the
property of rapid convergence to near-optimal thresholds of its
discrete time version.

6.3. Robustness, generality and parsimony

Given the affine function z = zmax � wr relating
threshold to reward rate, the continuous system (Eqs. (13)–(19))
accomplishes gradient ascent without explicit memory, reward-
rate comparison or step-size reduction mechanisms. It is also
robust to estimation errors and noise, since the intersection
point of Fig. 5 is a global attractor. Furthermore, it can be used
to adapt the threshold to its optimal value across a range of
task parameters. As noted earlier, behavioral evidence suggests
that human participants, performing well-practiced tasks, are
capable of adaptation over as few as 5–10 trials following a
change in task conditions (Bogacz et al., in press; Ratcliff et al.,
1999).

The method’s performance depends on the slope w and
intercept zmax of the affine function. This function defines a
parsimonious linear approximation of the relationship between
the optimal threshold and reward rate across a range of task
conditions, as in Fig. 2, provided that the resulting line passes
close to the reward rate maxima indicated by the dashed curve
of Fig. 6.4 We shall assume that these parameters have been
learned, for a given task, through practice under different
trial conditions (e.g., RSI or noise level). In Section 6.5 we
indicate how this can be done by reinforcement learning. First
we demonstrate that, like the discrete time version of the
algorithm described in Section 6.1, the continuous system (Eqs.
(13)–(19)) rapidly converges to near-optimal thresholds.

3 This last, rather unrealistic assumption implies a discontinuous decision
variable trajectory over time, but it can be relaxed without loss of generality
by introducing a refractory period and modeling the system as a stable, rapidly
decaying Ornstein–Uhlenbeck process during the RSI, as done in Fig. 7; we use
the simpler system here for ease of discussion.

4 Ideally one would use the envelope of optima – the dashed curve –
to transform reward rate estimates into thresholds, but we are constrained
to linearity by the plausible neural mechanism assumed in Section 4:
superposition of synaptic inputs to the threshold units.

6.4. Simulations

Numerical simulations of the continuous-time algorithm
demonstrate its effect on the behavioral variables of interest:
response time and accuracy. According to an optimal analysis
of the DDM in this task, thresholds should be set lower for
faster RSI conditions, producing faster mean RT and higher
error rates. Fig. 7 shows representative timecourses of the
decision process variables for one parameterization of the
abstract diffusion model in Eqs. (13)–(19), along with the
optimal thresholds and associated reward rates before and after
a task condition switch. Note how the system updates from
arbitrary initial conditions and again following the switch.

The right panel of Fig. 8 shows RT distributions and
error rates for the model of Eqs. (13)–(19), illustrating a
speed–accuracy tradeoff similar to tradeoffs seen in human
behavioral data (left panel, from a pilot study we conducted).
In each panel, median and interquartile RTs are shown on the
left and error rates on the right. These demonstrate significantly
faster RTs for shorter RSIs (Wilcoxon rank-sum test, p < 0.01,
each pairwise comparison), and also significantly higher error
rates for shorter RSIs (pairwise t-test, p < 0.001).

Finally, Fig. 9 shows the neural implementation of the
abstract model (in which a single decision variable and
threshold are decomposed into two accumulators and two
threshold units), and Fig. 10 shows activation timecourses of
its units in response to changing RSI conditions. As pointed
out in Section 4, the slope w of the affine function (Fig. 3B)
corresponds to the connection weight from the reward rate
estimator to the thresholding units, and the intercept zmax can
be interpreted as the bias (� ) of the sigmoid (Eq. (5)), or as an
additional input.

6.5. Learning the critical parameters

The model we have described thus far assumes a linear
approximation of the relationship between optimal threshold
and reward rate. However, the best approximation differs
considerably across different ranges of task parameters (see
Fig. 6). Here we consider the possibility that this approximation
– the affine function used to adapt the threshold – can itself be
adapted through learning. To achieve this, reward rates must be
experienced for different values of task parameters, such as RSI
and stimulus discriminability.

Noting that the reward rate of Eq. (10) depends on the
signal-to-noise ratio A/c, threshold-to-signal ratio z/A, and
RSI in a complex, nonlinear manner, it is clear that the slope
and intercept parameters w and zmax represent a substantial
compression of information. However, this is useful only
insofar as the affine function z = zmax � wr (shown as the
straight lines in Figs. 5 and 6) reasonably approximates the
envelope of reward rate optima (shown as the dashed curves
in Figs. 2 and 6) over a given range of task conditions. For
example, the best linear approximation for 500 ms–1 s RSIs
would significantly differ from the one for 1–2 s values (see
Fig. 6). Since linearizations may provide good approximations
only over limited ranges of task parameters, it seems reasonable
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Fig. 7. Timecourses of variables in a sample run of the algorithm. The DDM (Eq. (1)) is simulated directly in the top timecourse, where the decision variable
traces out a trajectory within bounds formed by the dynamic threshold (each point of contact between these represents a decision). Optimum thresholds for the two
RSI conditions simulated (0.5 s RSI, until about t ⇡ 42 s; 2 s RSI, from 42 s to end) are shown as dashed lines. The second timecourse shows a leaky integrator
estimate of the reward rate (Eq. (11)), superimposed on an estimate with added Gaussian noise, plus dashed lines indicating the expected reward rate for the optimum
threshold in each RSI condition. The third plot shows the signal direction (upward square pulse = left; zero = RSI; downward square pulse = right); responses are
dots plotted at height 1 for left and �1 for right; dots at height 0 are premature responses occurring due to low threshold, and ⇥’s denote errors. The fourth plot
shows RTs.

Fig. 8. Speed–accuracy tradeoffs produced by a human subject (left panel) and by the algorithm (right panel). The horizontal axis in all plots represents the RSI
condition for blocks of trials (0.3, 1 or 2 s). The left plot in each panel shows a boxplot of RT, with median RT represented by the middle notch, interquartile RT
range (25th–75th percentile) denoted by height of box, and outliers denoted by whiskers. The right plots show error rates.

to assume that the approximation given by the affine function
may be tuned to accommodate different task environments.
This can be accomplished by generic reinforcement learning.

Our arguments supporting fast threshold convergence
assume an affine function that is fixed or that changes

slowly in comparison to reward rate estimates. The affine
function effectively exploits knowledge about the shape of the
reward rate curves, trading off generality for speed and task-
specificity. Learning the transformation requires exploration of
a larger space of possibilities. We therefore propose that such
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Fig. 9. A five-unit neural network that implements the decision mechanism.
Mutually inhibiting accumulator units in the first layer approximate a DDM,
units with high gain and bias in the second layer detect threshold crossings, and
a reward rate estimator with balanced feedback and gain modulates the detector
thresholds according to z = zmax � wr .

‘environmental models’ are learned on a slow time scale, and
then used as described above to make rapid improvements to
task performance in ‘sub-environments’.

As an alternative to adapting the linear approximation,
reinforcement learning could be applied directly to threshold
adjustment itself. That is, reinforcement learning could be used
to produce a full representation of the multi-parameter family
of non-linear relationships between thresholds and reward
rates. Nevertheless, as with simple hill-climbing, general
reinforcement learning methods would still require annealing
or step-size reduction schedules tuned to these relationships
(cf. Section 3) in order to adapt thresholds quickly to a train
of incoming rewards, while simultaneously settling securely
on good parameter values in the face of noise (this is another
instance of a stability/plasticity tradeoff; Grossberg (1987)).
Separating the time scales allows us to obtain the best of both
worlds in this task by applying the threshold update algorithm
over a time scale of 5–10 trials while simultaneously using
reinforcement learning in the background to adjust slope and
intercept parameters over a time scale spanning multiple blocks
of trials.

In work referred to in Simen et al. (2005) and to
be described in a future publication, we have shown that
parameters such as slope and intercept can be learned by
continuous-time versions of temporal difference algorithms
such as the actor–critic method (cf. Doya (2000)). The proposed
method draws on the stochastic real-valued unit algorithm
of Gullapalli (1990), and is closely related to the Alopex
algorithm of Harth and Tzanakou (1974) and a general class
of stochastic optimization algorithms (see Kushner and Yin
(1997)). Specifically, connection weights from the reward rate
estimator to the threshold units of Fig. 9, which correspond
to slope, can be updated as in Eq. (15) of Section 6.2, but
at a much slower rate (larger k). To obtain the correct hill-
climbing behavior, the input (�r(t) + R(t)) in Eq. (15) can be
replaced by a product of the derivatives of longer-term averages

of reward rate and of the weight itself. Thus, slopes are adjusted
only when reward rates are consistently rising or falling, as
they would, for example, following a significant change of RSI
range. We show that chains of first-order units can approximate
derivatives, and also suggest a biologically-plausible neural
substrate that employs dopamine modulation of glutamatergic
synapses.

7. Discussion

We have demonstrated that very simple neural mechanisms
can give rise to speed–accuracy tradeoffs that maximize reward
rate and that are similar to the tradeoffs exhibited by human
subjects. Our approach exploits attractor dynamics to deal with
the challenges faced by straightforward reinforcement learning
and gradient ascent approaches to the threshold adaptation
problem, as well as more abstract algorithms (e.g., Busemeyer
and Myung (1992) and Erev and Barron (2005)). The model we
describe operates in continuous time, is able to reliably estimate
the reward rate, rapidly and stably converges on a threshold
that maximizes the reward rate to a reasonable approximation,
and does not require any additional apparatus for explicitly
remembering or comparing previous estimates of reward rate
with current estimates.

A critical feature of the model is that it relies on a linear
approximation of the relationship between optimal threshold
and reward rate across a range of task conditions. This
serves two purposes. First, it provides a representation of this
relationship that is considerably simpler the actual curvilinear
relationship (shown in Fig. 2) which is itself the solution
to a transcendental equation that can only be approximated
numerically (Bogacz et al., in press). Second, and perhaps
more importantly, it allows the neural implementation of a
threshold adaptation algorithm that uses an affine function to
achieve rapid convergence to a threshold in close proximity to
the optimal one. However, this use of a linear approximation
also represents a potential limitation of the model, insofar as
the specific best approximation varies as a function of task
parameters (see Fig. 6). We have suggested how the parameters
defining the linear approximation could themselves be adapted
using simple principles of reinforcement learning, although this
adaptation would need to occur on a significantly longer time
scale than that of threshold adaptation. The effects of these
simultaneous adaptations at different times scales, and their
relationship to observations about human performance, remain
to be explored in future theoretical and empirical studies.

Previous non-neural modeling work has approached the
issue of speed–accuracy tradeoffs from the perspective that
subjects try to minimize a cost consisting of a linear
combination of speed and accuracy, subject to information
processing constraints (e.g., Maddox and Bohil (1998) and
Mozer, Colagrosso, and Huber (2002)). This approach seems
entirely consistent with an extended version of our model that
also maintains an estimate of error rate in the same manner as it
estimates reward rate. What is new here is the implementation
of these processes using neurally plausible mechanisms and a
dynamical systems analysis of how and why they work. Reward
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Fig. 10. Activations of all units in the network of Fig. 9 are plotted, the position of each plot corresponding to the position of each unit in the circuit diagram. The
top set of panels shows a short timecourse, and the bottom set a longer one that illustrates fast threshold adaptation. The first column shows inputs to left and right
channels. The second column plots left and right accumulator activations and the log odds ratio of evidence derived from their difference. The third column shows
left and right threshold detectors. The top plot in the fourth column shows the reward rate monitor, with dotted vertical lines marking stimulus onsets, showing that
RSI was decreased from 2 to 1 s at about 30 s, and from 1 to 3 s at about 60 s. Response time (RT) is plotted below as asterisks. Note the similarity between the rate
monitor activity and the plots of threshold at bottom right.

rate estimators, by directly exciting threshold readout units,
can implement a speed–accuracy tradeoff that is nearly optimal
across a range of task conditions.

In this respect, our approach is similar to an existing
neural model in which continuous feedback in the form of
motivational signals influences underlying decision making
circuits based on lateral inhibition (‘gated dipoles’) in order
to change their stimulus sensitivity (Grossberg, 1982). To the
best of our knowledge, however, that type of model has not
been applied specifically to the problem of estimating and
responding to the rate of reward in a free response task.

It is also worth noting the similarity of the reward rate
estimate discussed in Section 5 to an ‘accumulating’ eligibility
trace as used in reinforcement learning (Sutton & Barto, 1998).
The two quantities are computed in the same way, but the
purpose of the eligibility trace is typically for changing weights
in reinforcement learning, whereas in our case we simply
feed the equivalent quantity into the response units as an
additional input. In this way, our approach corresponds to an
activation-based mechanism, whereas the traditional use of an
eligibility trace (as applied to brain modeling) is for governing
synaptic plasticity. Combining both approaches should provide
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a means for optimizing performance at both short and long time
scales.

7.1. Implementation in the brain

Recent findings suggest that the components of our model
may reflect the operation of specific neural structures. Previous
reports have suggested that areas of LIP as well as the frontal
eye field may correspond to the accumulators in the DDM
(e.g., Gold and Shadlen (2001), Hanes and Schall (1996) and
Shadlen and Newsome (2001)). Other findings have begun to
identify neural mechanisms that may be involved in reward
rate estimation and the adaptation of decision parameters.
For example, given the role of orbitofrontal cortex (OFC) in
encoding the reward value of objects or actions (e.g. Rolls
(2000)) and evidence that it may also encode the rate of reward
(Sugrue, Corrado, & Newsome, 2004b), it is possible that the
reward rate estimator unit in Fig. 9 may serve as a simple, first-
order approximation to OFC function in the type of decision
making task discussed here.

Further, activity in areas of monkey parietal cortex thought
to be involved in sensorimotor transformation has been shown
to be sensitive to expected future reward (Platt & Glimcher,
1999) and the relative values of competing choices (Sugrue
et al., 2004a) in oculomotor tasks. Similar effects have been
observed in other brain areas thought to be involved in the
decision-making process, such as the dorsolateral prefrontal
cortex (Barraclough, Conroy, & Lee, 2004; Leon & Shadlen,
1999). Thus it is possible that connections from OFC to
threshold detectors implemented in frontal and/or parietal
cortex may implement something like our threshold adaptation
algorithm.

Given their role in reward processing, the basal ganglia
are also promising candidates for involvement in threshold
modulation. Along these lines, Frank (2006) discusses a pattern
of anatomic connections and a possible role for the subthalamic
nucleus (STN) that are consistent with the mechanisms we have
described. There, the proposed role of the STN is effectively
to increase the threshold when increased conflict is detected
between competing responses in a Go/No-Go task. In this way,
emphasis shifts toward accuracy and away from speed when
response conflict is high. A shift in the opposite direction
in response to reward rate might similarly be achieved by
connections from OFC to the striatum, given the role that
the striatum plays in promoting, rather than inhibiting, the
propagation of activity through the basal ganglia (as the STN
does).

Our model assumes that speed–accuracy tradeoffs are
implemented in the brain at a single stage of processing (the
threshold-crossing detection stage) through modulation by an
estimate of reward rate. However, neither reward rate estimation
nor threshold-crossing detection are functions that are likely
to be discretely localized in the brain. As we have noted
above, many areas of the brain are sensitive to information
about reward. Furthermore, the specific neural mechanisms
responsible for information accumulation and threshold
adjustment are likely to vary based on the demands of a given

task (e.g., whether it involves visual or auditory information,
and a manual or oculomotor response). Presumably these are
selected by frontal control mechanisms for task engagement
(e.g., Miller and Cohen (2001)). We propose, however, that our
model identifies fundamental principles of operation that may
be shared in common by the neural mechanisms involved in
decision making across different processing domains. Along
these lines, it will be important to explore the relationship
between these mechanisms and others that have been proposed
for the adaptive regulation of performance. This includes
the use of processing conflict to adapt threshold as well as
attentional variables (e.g. Botvinick et al. (2001)), as well as the
role of neuromodulatory mechanisms in adapting processing
parameters such as threshold and gain (e.g., Aston-Jones and
Cohen (2005)).

7.2. Extensions to a broader range of decision tasks

Our model has focused exclusively on free responding in
the TAFC task. However, the basic ideas should extend to
address a broader range of more realistic tasks. For example,
it should be straightforward to incorporate our reward rate
estimation and threshold adaptation mechanisms into models
for free responding in multi-alternative decision tasks (e.g.,
Bogacz and Gurney (in press), McMillen and Holmes (2006)
and Usher and McClelland (2001)), as well as Go/No–Go tasks
as discussed above. It should also be possible to address other
response conditions, such as deadlining, by elaborating the
model to maintain an estimate of late-response rate, and to use
this in place of reward rate estimates to set an internal deadline
for responding. Finally, decision-making tasks that also involve
working memory over a delay period can be modeled by
implementing thresholds via detector units with strong, self-
excitatory positive feedback – as in the firing rate models of
Nakahara and Doya (1998) and Simen (2004) and the spiking
models of Seung, Lee, Reis, and Tank (2000) and Wang (2002)
– rather than non-self-exciting units with very steep gain in their
activation functions (as in Section 4). The analysis presented
here in terms of units with activation functions that are step
functions carries over without loss of generality to such self-
exciting units (Simen, 2004).

We hope that this model helps extend the foundation
that has begun to develop for formalizing decision-making
tasks, particularly those that integrate continuous time reward
monitoring and prediction with sensory mechanisms, and that
it may serve as a bridge between psychological function and
neural implementation.
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