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When faced with choices between two sources of reward, animals can rapidly adjust their
rates of responding to each so that overall reinforcement increases. Herrnstein's ‘matching
law’ provides a simple description of the equilibrium state of this choice allocation process:
animals reallocate behavior so that relative rates of responding equal, or match, the relative
rates of reinforcement obtained for each response. Herrnstein and colleagues proposed
‘melioration’ as a dynamical process for achieving this equilibrium, but left details of its
operation unspecified. Here we examine a way of filling in the details that links the decision
making and operant conditioning literatures and extends choice proportion predictions into
predictions about inter-response times. Our approach implements melioration in an
adaptive version of the drift diffusionmodel (DDM), which is widely used in decisionmaking
research to account for response time distributions. When the drift parameter of the DDM is
0 and its threshold parameters are inversely proportional to reward rates, its choice
proportions dynamically track a state of exact matching. A DDM with fixed thresholds and
drift that is determined by differences in reward rates can produce similar, but not identical,
results. We examine the choice probability and inter-response time predictions of these
models, separately and in combination, and the possible implications for brain organization
provided by neural network implementations of them. Results suggest that melioration and
matching may derive from synapses that estimate reward rates by a process of leaky
integration, and that link together the input and output stages of a two-stage stimulus–
response mechanism.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

For much of the twentieth century, psychological research on
choice and simple decision making was typically carried out
within one of two separate traditions. One is the behaviorist
tradition, emerging from the work of Thorndike and Pavlov
and exemplified by operant conditioning experiments with
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animals (Ferster and Skinner, 1957), including the variable
interval (VI) and variable ratio (VR) tasks that we examine in
this article. The other tradition, while also focused quantita-
tively on simple behavior, can be categorized as cognitivist: its
emphasis is on internal, physical processes that transduce
stimuli into responses, and on behavioral techniques for
making inferences about them. This style of research origi-
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nated in the mid-1800s in the work of Donders, and is
exemplified by choice-reaction time experiments with
humans (Posner, 1978), among other approaches.

Today the boundaries between these traditions are less
well defined. From one side, mechanistic models of internal
processes have achieved growing acceptance from contempo-
rary behaviorists (Staddon, 2001). From the other side, there is
a growing appreciation for the role of reinforcement in human
cognition (Bogacz et al., 2006; Busemeyer and Townsend,
1993). Here we propose a theoretical step toward tightening
the connection between these traditions. This step links
models of choice based on the content of a perceptual
stimulus (as in simple decision making experiments) with
models of choice based on a history of reinforcement (as in
operant conditioning experiments). It thereby provides a
potential explanation of response time (RT) and inter-
response time (IRT) data in operant conditioning, and the
development of response biases in simple decision making. As
we show, behavioral results in both the conditioning and
decision making literatures are consistent with the predictions
of the model we propose to link these traditions.

Specifically, we prove that a classic behaviorist model of
dynamic choice reallocation— ‘melioration’ (Herrnstein, 1982;
Herrnstein and Prelec, 1991; Herrnstein and Vaughan, 1980;
Vaughan, 1981) — can be implemented by a classic cognitive
model of two-alternative choice-reaction time — the drift
diffusion model (Ratcliff, 1978), hereafter referred to as the
DDM — under natural assumptions about the way in which
reinforcement affects the parameters of the DDM. Melioration
predicts that at equilibrium, behavior satisfies thewell-known
‘matching law’ (Herrnstein, 1961). This states that relative
choice proportions equal, or match, the relative rates of the
reinforcement actually obtained in an experiment:

Bi

B1 + N + Bn
=

Ri

R1 + N Rn
: ð1Þ

Here Bi represents the rate at which responses of type i are
emitted, and Ri represents the rate of reinforcement, or
reward, earned from these responses (we will use the terms
‘reinforcement’ and ‘reward’ interchangeably).

The DDM and variants of it can in turn be implemented in
neural networks (Bogacz et al., 2006; Gold and Shadlen, 2001;
Smith and Ratcliff, 2004; Usher and McClelland, 2001), and we
show that parameter adaptation by reinforcement can be carried
out by simple physical mechanisms — leaky integrators — in
such networks. Furthermore, while it is relatively abstract
compared tomore biophysically detailed alternatives, our simple
neural network model gains analytical tractability by formally
approximating the DDM, while at the same time maintaining a
reasonable, first-order approximation of neural population
activity (Wilson and Cowan, 1972). It therefore provides an
additional, formal point of contact between psychological
theories, on the one hand, and neuroscientific theories about
the physical basis of choice and decision making, on the other.

In what follows, we show how melioration emerges as a
consequence of placing an adaptive form of the DDM in a
virtual ‘Skinner box’, or operant conditioning chamber, in
order to perform a concurrent variable ratio (VR) or variable
interval (VI) task. In these tasks, an animal faces one or more
response mechanisms (typically lighted keys or levers). In
both tasks, once a reward becomes available, a response is
then required to obtain it, but ordinarily no ‘Go’ signal
indicates this availability. In a VR task, rewards are made
available for responses after a variable number of preceding
responses; each response is therefore rewarded with a
constant probability, regardless of the inter-response dura-
tion. To model a VR task mathematically, time can therefore
be discretized into a sequence consisting of the moments at
which responses occur. In a VI task, in contrast, rewards
become available only after a time interval of varying duration
has elapsed since the previous reward-collection, and this
availability does not depend on the amount of any responding
that may have occurred since that collection. Modeling VI
tasks therefore requires a representation of time that is
continuous rather than discrete. Finally, ‘concurrent’ tasks
involve two or more response mechanisms with independent
reward schedules. Each of thesemay be a VR or VI schedule, or
one of a number of other schedule-types; the particular
combination used is then identified as, for example, a VR–
VR, VI–VI, or VR–VI schedule.

Having shown how an adaptive DDM can implement
melioration, we then develop a neural implementation of
this model that can be used to make predictions about firing
rates and synaptic strengths in a model of brain circuits
underlying choice and simple decision making.

In the Discussion, we address the relationship of this
model to other neural models of melioration and matching,
and we propose a possible mapping of the model onto the
brain.

We conclude by addressing the prospects for extending the
current model to tasks involving more than two concurrent
responses.
2. Results

2.1. Choice proportions of the adaptive DDM

Exact melioration and matching occur for one model in a
family of adaptive choice models based on the DDM; for the
othermodels in this family, close approximations tomatching
can be obtained.

The model family that we analyze uses the experience-
based or feedback-driven learning approach of the adaptive
DDM in Simen et al. (2006). This adaptive model was designed
to learn to approximate optimal decision making parameters
(specifically, response thresholds) of the DDM in a two-
alternative decision making context (Bogacz et al., 2006). In
an operant conditioning context, and with a slight change to
its method of threshold adaptation, the expected behavior of
this model (Model 1) is equivalent to melioration, which leads
to matching at equilibrium (i.e., a state in which choice
proportions are essentially unchanging).

Model 1 makes choices probabilistically, and as a function
of the relative reward rate (Ri / (R1+R2)) earned for each of the
two alternatives (this quantity is sometimes referred to as
‘fractional income' — e.g., Sugrue et al., 2004).

We also include in this family anothermodel (Model 2) that
adapts a different DDM parameter (drift). This model is
discussed in Bogacz et al. (2007). Although it cannot achieve



Fig. 1 – Parameters, first-passage density and sample path
for the drift diffusion model (DDM). The leftmost point of the
horizontal, time axis is the time at which stimulus onset
occurs. In this example, the drift, which models the effect
of a perceptual stimulus, is downward with rate A; y0 is the
starting point of the diffusion process. The sample path
is an individual random walk in continuous time; the
distribution of an ensemble of such paths is shown by
the dashed Gaussians that expand vertically as time
progresses. Response time distributions are equivalent to
the distributions of first-passage times shown as
ex-Gaussian-shaped curves above the upper and below the
lower threshold (T0 is depicted here as elapsing before the
random walk begins, but this is only for simplicity — a
portion of T0 should follow the first-passage to encode motor
latency.)
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exact matching (Loewenstein and Seung, 2006), this model
provides an account of another important function that is
widely used in reinforcement learning (Sutton and Barto, 1998)
to determine choice probabilities: the ‘softmax’ or logistic
function of the difference in reward rates earned from the two
alternatives. We address this model because behavioral
evidence abounds for both types of choice function, and
because the adaptive DDM may be a single mechanism that
can account for both.

The rest of the model family consists of parameterized
blends of these two extremes. These blended models adapt
thresholds and drift simultaneously in response to reward
rates (the proportional weighting of each of these parameters
defines the model space spanning the range between Model 1
and Model 2).

We begin our discussion of choice proportions with
Model 1, which implements melioration and achieves
matching exactly via threshold adaptation. We then move
on to the alternative that adapts drift, and finally to models
that blend the two approaches.

2.1.1. Model 1: the threshold-adaptive, zero-drift
diffusion model
In order to determine the effects of parameter adaptation on
the behavior of Model 1 (or any other model in the adaptive
DDM family), we make use of known, analytical expressions
for its expected error proportions and decision times in the
context of decision making tasks.

In a decision making task, the response time of the DDM is
determined by the time it takes after the onset of a stimulus
for a drift diffusion process to reach an upper or lower
threshold (±z; see Fig. 1). A drift diffusion process is a random
walk with infinitesimally small time steps that can be defined
formally (Gardiner, 2004) by the following stochastic differen-
tial equation (SDE):

dx =A dt + c dW: ð2Þ

See Fig. 1 for an interpretation of the drift parameter A and the
noise parameter c. As the distance between thresholds and
starting point increases, response time increases. At the same
time, accuracy increases, because it is less likely that random
fluctuations will push the diffusion process across the
threshold corresponding to thewrong response for the current
perceptual stimulus.

The expected proportion of errors (denoted 〈ER〉) and the
expected decision time (denoted 〈DT〉) are described by the
following analytic expressions ((Busemeyer and Townsend,
1992); cf. (Bogacz et al., 2006) and (Gardiner, 2004)):

hERi = 1
1 + e 2Az=c2ð Þ �

1� e�2y0A=c2

e2Az=c2 � e�2Az=c2

 !
; ð3Þ
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1
A: ð4Þ

Varying the drift (A), thresholds (±z) and starting point (y0)
produces adaptive performance.

Model 1 is a variation on the model in Simen et al. (2006).
The latter model achieves an approximately reward-maxi-
mizing speed-accuracy tradeoff (SAT) in a large class of
simple decision making tasks.

It does this by setting the absolute value of both thresholds
equal to an affine function of the overall reward rate R earned
from either response: z=zmax−w ·R. Its basic operating princi-
ple is that as R increases, thresholds decrease, so that the
diffusion process reaches a threshold more quickly (speed
increases), but is alsomore likely to cross the wrong threshold
(accuracy decreases).

The current model, Model 1, sets thresholds to be
inversely proportional to reward rates. This inverse propor-
tionality produces SAT-adjustment properties similar to
those of the affine function used in Simen et al. (2006).
Model 1 also generalizes the symmetric threshold-setting
algorithm defined in that article to allow for independent
adaptation of the two thresholds (we denote their values as
θ1, corresponding to the upper threshold, +z, and θ2,
corresponding to the lower threshold, −z) based on indepen-
dent estimates of the reward rate earned for each response
(denoted R1 and R2 respectively):

hi tð Þ = n=Ri tð Þ: ð5Þ

This asymmetric threshold adaptation is equivalent to
adapting thresholds ±z symmetrically while simultaneously



1 In contrast, some problematic assumptions are required
before discrete-time schemes (Eq. 8) can be applied to VI tasks.
These attempt to estimate reward rates in continuous time by
making only discrete adjustments to an expected reward
magnitude estimate after each response. To account for absolute
time, then, they must assume that responses occur at a constant
rate, or that in between observed responses comes a regularly-
paced stream of unobserved responses (Bush and Mosteller,
1951). Rather than make such assumptions from the start, we
have chosen to see how far we can get without them.

Fig. 2 – Two examples of rate estimates in response to a regularly paced sequence of input pulses. On the left, input pulses
are widely spaced. The dashed horizontal line plots the actual rate of the pulses in pulses per second. On the right, a
higher rate of pulses leads to a higher estimate, which oscillates around the true rate parameter (the dashed line). The results
for two different time constants — τR=10 s, bold; τR=75 s, thin — are shown in both plots.
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adapting the starting point y0; however, picking the conven-
tion that the starting point is always 0 makes notation more
compact. Eqs. (2–4) can then be interpreted by substituting
(θ1+θ2) /2 for z, and (θ2–θ1) /2 for y0. We refer to Model 1 as
the threshold-adaptive DDM.

In order for an analysis of response times and choice
probabilities based on the DDM to be exact, however, we
cannot allow the threshold to change during the course of a
single decision. A threshold that grows during decision
making will produce different expected response times and
probabilities that are difficult to derive analytically. In order to
make exact analytical use of the DDM, the model updates the
thresholds according to Eq. (5) only at the moment of each
response:

hi tð Þ = n=Ri tLð Þ; where tL = time of last response: ð6Þ

Thereafter, they remain fixed until the next response.
Simulations suggest that using Eq. (5) directly without this
change-and-hold updating produces very similar results.

2.1.2. Reward rate estimation
In order to use reinforcement history to control its threshold
parameters, the model must have a mechanism for esti-
mating the rate of reward earned for each type of response
(we will refer to the two response types in a two-alternative
task — e.g., a left vs. a right lever press — as response 1 and
response 2).

The model computes the estimate Ri of reward earned
for response i by the ‘leaky integrator’ system defined in
Eq. (7):

sRd
dRi

dt
= ri tð Þ � Ri tð Þ: ð7Þ

The time-solution of Eq. (7), Ri(t), is obtained by convolving the
impulse-response function of a low-pass, resistor–capacitor
(RC) filter (a decaying exponential) with the input reward
stream, ri(t) (Oppenheim and Willsky, 1996). If rewards are
punctate and intermittent, then they can be represented by a
reward stream ri(t) which is a sum of Dirac–delta impulse
functions (sometimes called ‘stick functions’). A reward
sequence of this type is depicted in Fig. 2, along with two
resulting reward rate estimates based on Eq. (7) with different
time constants, τR.

Eq. (7) is a continuous time generalization of the following
difference equation, which defines Ri as an exponentially
weighted moving average of the input ri(n) (where n indexes
time steps of size Δt; n can also be used to index only the times
at which responses are emitted):

Ri n + 1ð Þ = 1� að ÞRi nð Þ + ari nð Þ: ð8Þ

This is a common approach to reward rate estimation in
psychological models (Killeen, 1994). The extreme rapidity
with which animals are able to adapt nearly optimally to
changing reinforcement contingencies (Gallistel et al.2001),
and near-optimal fitted values of τ in Sugrue et al. (2004),
suggest that animals must also have a mechanism for
optimizing τR or α as well (Staddon and Higa, 1996).

We take a continuous time approach (Eq. 7) in order to
account for animal abilities in variable interval (VI) tasks (and
for simplicity, we leave τR fixed). In these tasks, the reward
rate in time (rather than the proportion of rewarded
responses) must be known in order to adapt properly.1

2.1.3. Matching by the threshold-adaptive, zero-drift
diffusion model
We now describe what happens when the threshold-
adaptive diffusion model (Model 1) is applied to a typical
task in the instrumental or operant conditioning tradition.
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One such task is a concurrent VI–VI task, in which there is
usually not a signal to discriminate, and no ‘Go’ signal or cue
to respond.2

A natural application of the DDM to this design involves
setting the drift term to 0: no sensory evidence is available
from the environment for which a response will produce
reward. Instead, only reinforcement history is available to
guide behavior. We refer to the DDM with drift identically 0 as
a zero-drift diffusion model.

As we show in Appendix B, the choice probabilities are as
follows for a zero-drift diffusion model with starting point
equal to 0, and thresholds θ1 and θ2 of possibly differing
absolute values:

PiuP ith boundary crossingð Þ = hj
hi + hj

; ipj: ð9Þ

Substituting ξ/Ri for θi gives the following:

Pi =
hj

hi + hj
;ipj

=
n=Rj

n=Ri + n=Rj

=
1

Rj=Ri + 1

=
Ri

Rj + Ri

Z
Pi
Pj

=
Ri

Rj
:

ð10Þ

When decision making is iterated repeatedly with a mean
response rate b, the rate Bi of behavior i equals Pi ·b. Eq. (10) is
then equivalent to the matching law (Eq. 1) for two-response
tasks.

If we ignore response times and simply examine choice
sequences, we note that the adaptive diffusion model is
equivalent to a biased coin-flipping procedure, or Bernoulli
process, for selecting responses (at least whenever it is in a
steady state in which relative response rates are constant for
some time period). For that reason, the adaptive diffusion
model predicts that the lengths of runs in which only one of
the two responses is emittedwill be distributed approximately
as a geometric random variable — this is a feature of its
behavior that is commonly used to distinguish coin-flipping
models that account for matching from others that match by
some other means. Geometrically distributed run lengths
frequently occur in experiments in which a change-over delay
(COD) or other penalty is given for switching from one
response to the other (Corrado et al.2005) whereas run lengths
are non-geometric when CODs are absent (Lau and Glimcher,
2005). Indeed, without such penalties, matching itself is
usually violated. This result suggests that, in addition to the
account we give here of choice by reinforcement-biased coin-
flipping, some theoretical account must eventually be given
for an apparently prepotent tendency toward response-
alternation that competes with the biasing effects of rein-
forcement. Such an account, however, is beyond the scope of
our current analysis.
2 Although see, for example, Corrado et al. (2005) and Lau and
Glimcher (2005) for recent applications of a constant-probability
form of VI–VI design in which signal discrimination and cued
responding do occur.
2.1.4. Melioration by the threshold-adaptive, zero-drift
diffusion model
Melioration itself arises from Model 1 automatically. Loosely
speaking, melioration (Herrnstein, 1982; Herrnstein and
Prelec, 1991; Herrnstein and Vaughan, 1980; Vaughan, 1981)
is any process whereby an increase in obtained reward for
one response leads to a greater frequency of that response.
(The formal definition of melioration and a proof based on
Eq. 10 that Model 1 implements melioration are given in
Appendix A.)

Because an increase in reward rate for one response brings
its threshold closer to the DDM starting point, the model
dynamically reallocates choice proportions so that the more
rewarding response is selected with higher probability, and
thus relatively more frequently, in such a way that exact
matching occurs at equilibrium. Importantly, though, the
model's overall response rate must also be known before
anything can be said about the absolute frequency of each type
of response.

2.1.5. Difficulties faced by Model 1
In fact, without some additional model component for
controlling response rates, the zero-drift diffusion model
with thresholds set by Eq. (5) and — critically — reward
rates estimated by Eq. (7) produces a response rate that
inevitably collapses to 0 at some point. This occurs because
at least one and possibly both of the two thresholds move
away from the starting point after every response (because
one or both of the reward rate estimates must decrease
at every moment). This slows responding, which in turn
reduces the rate of reward in a VR or VI task, in a vicious
circle that ultimately results in the complete cessation of
responding. We discuss why this result is inevitable in
Section 2.2.

One way to resolve this problem is to enforce a constant
rate of responding. This can be achieved by renormalizing
both thresholds after each response so that their sum is
always equal to a constant K (i.e., divide the current value for
θi (call it θ′i) by the sum of current values θ′1+θ′2=K′ andmultiply
by the sum of old values (θ1+θ2)=K to get the new value θ′′i; as
a result, θ′′1+θ′′2=K).

Some form of renormalization is therefore promising as a
solution to response rate collapse. However, since inter-
response times and response rates are variable features of
behavior that we seek to explain by the use of the DDM, we
cannot assume constant response rates. Instead we use a
different renormalization scheme, outlined in Section 2.2.7,
that is based on a second drift diffusion process operating in
parallel with the choice process. This parallel process effec-
tively times intervals (Simen, 2008) and adaptively enforces a
minimum overall response rate (B1+B2).

It is worth noting that an even simpler solution exists
which can account for RT data in many tasks, but which is
unable to handle traditional VI schedules. Rather than basing
thresholds on reward rates, this solution sets thresholds
inversely proportional to the expected reward magnitude for
each response, computed by Eq. 8, as for example in Bogacz et
al. (2007) and Montague and Berns (2002). In this case, reward
rates do not decrease toward 0 (and thresholds do not increase
toward infinity) at every moment other than when a reward
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is received. Instead, a threshold only increases when its
corresponding response earns less than what is expected, and
complete cessation of responding never occurs except on an
extinction schedule— that is, a schedule in which rewards are
omitted on every response.

Nevertheless, peculiarities in the RT and IRT predictions of
Model 1 (discussed in Section 2.2) and the need to consider VI
schedules for generality lead us next to consider a second
approach to adaptive behavior by the DDM.

2.1.6. Model 2: the drift-adaptive, fixed-threshold DDM
Adapting drift on the basis of reward rates is another way to
achieve choice reallocation, and this approach has antece-
dents in psychology (Busemeyer and Townsend, 1993) and
behavioral neuroscience (Yang et al., 2005). A drift adaptation
approach does not generally achieve exact matching, but it
Fig. 3 – Expected behavior of Model 1, the zero-drift diffusion mo
shows expected proportion of 1-responses as a function jointly
for 2-responses (R2); radial lines in the R1,R2 plane show contou
as a function of R1 and R2; this 3D plot is rotated relative to pa
discernible; since its height goes to infinity, it is also truncated
(notice the collapse to 0 along both the R1 and R2 axes). (D) Sca
responses in which those reward rates were obtained; two aver
(E) Scatterplot showing expected choice proportions plotted vs.
best-fitting line (solid) is superimposed, and its equation is dis
(dashed line). (F) Choice ratio B1/B2 plotted vs. the reward ratio
highlighting generalized matching behavior. Predicted behavior
is solid.
also does not suffer the same sort of response rate collapse as
the threshold-adaptive diffusion model.

Bogacz et al. (2007) investigated drift adaptation rather
than threshold adaptation in a drift diffusionmodel of human
performance in an economic game similar to a concurrent VR–
VR experiment (Egelman et al., 1998; Montague and Berns,
2002). They noted that when drift is determined by the
difference in expected value for each response (i.e., A in Eqs.
(2–4) equals γ·(R1−R2)), and when the input stimulus equally
favors both responses, then choice probability is given by a
sigmoid function of the difference in expected value (specif-
ically, a logistic function equal to 1−〈ER〉, with 〈ER〉 defined by
Eq. 3 with y0=0). They further note that this choice probability
rule is identical to the ‘softmax’ function typically used for
probabilistic action selection in reinforcement learning
(Sutton and Barto, 1998).
del (drift=0) with threshold adaptation (θi=ξ/Ri). (A) Surface
of reward rate for 1-responses (R1) and reward rate

rs of constant choice probability. (B) Expected decision time
nels A and C to make the shape of the surface more easily
to 5 s. (C) Expected 1-response rate (B1) as a function of R1,R2

tterplot of random R1,R2 pairs, representing blocks of 100
age levels of net reward are shown (0.3: cyan, 1.2: magenta).
relative reward rate in those blocks of responses; the
played. Matching predicts a slope of 1 and intercept of 0
R1/R2 on a log–log scale, which is frequently used for
is plotted as a dashed line; best-fitting line
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For this model, the choice proportion ratio is as follows:

P1
P2

= P1= 1� P1ð Þ

=
1

1 + e�2g R1�R2ð Þz=c2 =
e�2g R1�R2ð Þz=c2

1 + e�2g R1�R2ð Þz=c2

= end R1�R2ð Þ; with n > 0

: ð11Þ

Eq. (11) can approximate the strict matching law as long as
R1 / (R1+R2) is not too close to 0 or 1, and the model's trial-by-
trial performance is qualitatively similar to melioration as
defined by (Herrnstein and Vaughan, 1980) (cf. Montague and
Berns (2002) and Soltani and Wang (2006)). Corrado et al.
(2005) also find evidence for a better fit to monkey behavioral
data using a sigmoid function of reward rate differences than
was found in fits of a choice function based on the ratio of
reward rates (as in Sugrue et al., 2004).

In order to get the close fits that are sometimes observed
experimentally (Davison and McCarthy, 1988; Williams, 1988)
between data and the predictions of the strict matching law
over the total possible range of relative reward rate values
(R1 / (R1+R2)) ranging from 0 to 1, a DDM-derived logistic choice
function (as in Eq. (3)) requires the right balance between
expected reward difference (proportional to A), noise (c) and
fixed threshold z. For any given data set for which strict
matching appears to hold, a parameter set can be found so
that a logistic function of reward rate differences fits the data
fairly well. However, for a different data set with a different
range of reward rates that also accords with strict matching
(e.g., a condition in the same experiment that doubles or
halves the reward magnitudes for both responses), the same
threshold and noise values cannot produce a good fit. When
choice proportions are plotted as a function of relative reward
rates (as in Fig. 3E), the same logistic function will overmatch3

if reward magnitudes for each response are boosted. The
sigmoid in that case will become too steep at its inflection
point to approximate the identity line predicted by matching
(an example of this is shown in Fig. 4E). Thus, empirical
results in the literature suggest that in order for sigmoid
choice functions derived from the DDM to fit data generally,
either thresholds or noise must be adapted as well as drift.

We have demonstrated that the threshold-adaptive, zero-
drift diffusion model predicts the strict matching law.4

Furthermore, the drift-adaptive, fixed-threshold DDM predicts
the sigmoid choice function for which some researchers have
found evidence (e.g., Lau and Glimcher (2005) and Corrado et al.
(2005)). On the basis of implausible IRT predictions of either
model in isolation (discussed in the next section), we will argue
that simultaneously adapting both drift and thresholds in
response to changing reward rate estimates is the most
sensible modeling approach.
3 ‘Overmatching’ is said to occur when a slight relative reward
advantage results in a larger relative choice frequency than is
predicted by the matching law (Davison and McCarthy, 1988).
4 The same argument shows that raising reward impulses to a

power and multiplying one of them by a constant furthermore
predicts the following generalized matching law (Baum, 1974),
which is a more robust description of a wider range of behavioral
data (at the cost of two additional parameters): B1 /B2=a · (R1 /R2)b.
Wenow turn to the othermajor feature of behavior that the
DDM is used to explain in decision making research —
response times. These predictions may be used to predict
response rate and inter-response times in operant condi-
tioning tasks.

2.2. Decision times and inter-response times

We have shown that the DDM can implement biased coin-
flipping as a temporally extended stochastic process. As was
shown in Bogacz et al. (2006) and Usher and McClelland
(2001), a simple stochastic neural network can in turn
implement diffusion processes (see Section 2.2.5). Thus, to
the extent that neural networks stand as plausible models of
brain circuits, the preceding results suggest progress in
mapping the abstract coin-flipping stages of several models
onto the brain (for example, the models of Corrado et al.
(2005), Daw et al. (2006), Lau and Glimcher (2005) and
Montague and Berns (2002)).

However, the real strength of the DDM in decision making
research has been its ability to provide a principled account for
the full shape of RT distributions in a variety of decision
making experiments involving humans and non-human
primates (Smith and Ratcliff, 2004).

Since we propose to model performance in typical VR and
VI conditioning tasks (tasks in which no signal to respond is
given) by restarting the DDM from 0 after every response, the
same first-passage time distributions of the DDM serve as IRT
predictions without any modifications (cf. a similar approach
in Blough (2004)). These IRT predictions must be addressed
before an adaptive DDM can be considered a plausible beha-
vioral model of operant conditioning data.

2.2.1. Slower responding for less rewarding responses
The adaptive DDM discussed in Section 2.1 predicts slower
responding when a response is chosen that has recently been
less rewarding than the alternative (either because rewards for
that response have been small when the response was made,
or because that response has been made only infrequently).
This is true regardless of whether drift or threshold or both
of these are adapted.

In the case of threshold adaptation alone (Model 1), the
less rewarded response will have a threshold that is on
average farther from the starting point than the threshold for
the more rewarded response; a zero-drift diffusion process
therefore takes more time to reach the more distant
threshold. The same holds for a model in which thresholds
are equidistant, but drift is nonzero (Model 2); in that case,
drift toward one threshold will produce faster responses of
that type than the alternative. These qualitative predictions
are implied by Eq. (4) when reward-modulated thresholds
and/or drift are substituted.

2.2.2. Absolute rates of responding
Beyond predicting relative response rates, the DDM predicts
absolute IRTs and absolute rates of responding. In fact, the
adaptive DDM with threshold modulation and zero drift
(Model 1) predicts a variant of the absolute response rate
phenomenon known as ‘Herrnstein's hyperbola’ when we
make the same assumptions as Herrnstein and colleagues.



Fig. 4 – Expected behavior of Model 2, the fixed-threshold diffusion model with drift adaptation (drift=d · (R1−R2), with drift
coefficient d=25, and threshold θi=0.5). Notice the implausibly high response rate at (R1,R2)= (0,0) in panels B and C, a point
where no responding should be expected. Furthermore, while a reasonable approximation to strict matching is observed in
Panel E for relative reward rates near 0.5 and summed reward rates near 0.3 as in Fig. 3 (cyan scatterplots), keeping other
parameter values the same while doubling reward rates in panel D (so that the rates obtained for responses 1 and 2 sum to
approximately 0.6) produces overmatching (not shown); quadrupling rewards leads to extreme overmatching (magenta
scatterplots in D, E, and F). In contrast, Model 1's behavior approximates strict matching for all reward rate combinations.
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Herrnstein's hyperbola (De Villiers and Herrnstein, 1976) is a
hyperbolic function that describes response rate as a
function of earned reward rate (R1) in a variety of single-
schedule tasks (those in which there is only a single response
alternative):

B1 =
kR1

R1 + Re
: ð12Þ

Here Re is the ‘extraneous’ rate of reward earned from all other
behaviors besides the behavior of interest (for example, Remay
represent the reward the animal obtains from grooming
behaviors in an experiment that focuses on lever-pressing
rates as B1). The constant k represents the sum of all behaviors
in which the subject engages during the experiment (both the
experimental response and all other behaviors). This result
derives from the matching law (Eq. 1) as long as Re is assumed
to be constant (De Villiers and Herrnstein, 1976). In fact,
however, the constant k assumption does not appear to be
widely accepted by researchers in animal behavior, because of
variations that appear to depend on satiety and other expe-
rimental factors (Davison andMcCarthy, 1988;Williams, 1988).
Furthermore, assuming a constant rate of reward Re earned
from inherently rewarding behavior extraneous to the task
seems implausible. Nevertheless, Eq. (12) can be successfully
fit to data from a wide range of experiments, and when we
make the same assumptions, the adaptive-threshold, zero-
drift diffusion model (Model 1) produces a very similar equa-
tion for B1, with one interesting deviation.

In order to model single-schedule performance with the
DDM, we assume that the upper threshold, θ1, corresponds to
response 1, and that the lower threshold, which we now call
θe, corresponds to choosing some other response (e.g.,
grooming), the total rate of reward for which is Re. The mean
decision time of the zero-drift diffusionmodel is the following
(see Eq. (34) in Appendix C):

hRTi = h1dhe
c2

+ T0: ð13Þ

T0 represents the assumption of an unavoidable sensory–
motor latency that must be added to the decision time of
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Eq. (34) in order to give a response time; T0 may itself be
assumed to be a random variable, typically modeled as
uniformly distributed and with variance that is small
relative to that of decision times (at least in the typical
decision making experiment; cf. Ratcliff and Tuerlinckx
(2002)).

It will also be useful to note the following relationship
between the rate of behavior i and the rate of overall behavior,
which is proved in Appendix D:

Bi =
P ið Þ
hRTi = P ið ÞdhBi: ð14Þ

That is, the expected rate of the ith response is the probability
of choosing the ith response, times the expected rate of
responses of any kind.

Substituting Eqs. (9) and (13) into Eq. (14) gives the following:

B1 =
he

h1 + heð Þd h1he
c2

+ T0

� �
=

n

Red
n
Re

+ n
R1

� �
n2

R1Rec2
+ T0

� �
=

1
T0
R1

R1 + Re + n2

c2
d 1

R1
+ 1

Re

� �
:

ð15Þ

Except for the final term in the denominator, this is identical
to Eq. (12). Furthermore, k in DeVilliers and Herrnstein's
formula — which is intended to represent the rate of all
behavior in total— corresponds in Eq. (15) to the inverse of the
residual latency T0, and this is indeed the least upper bound
on the rate of behavior that can be produced by the model
(holding Re fixed and taking R1 to infinity). Thus the threshold-
adaptive DDM (Model 1) provides nearly the same account for
approximately hyperbolic single-schedule responding as the
matching law (as long as R1 and Re are not too small, and
under the problematic assumption of constant Re — we
examine the consequences of abandoning this assumption
in Section 2.2.4).

2.2.3. Choice and IRT predictions combined
Now we are in a position to examine the combined choice
proportion and IRT/response rate predictions of the adap-
tive DDM, to see how they compare to the choice proportion
predictions of the strict and generalized matching laws, and
to the response rate predictions of the strict matching law
in single-schedule tasks. Fig. 3 shows the expected propor-
tion of 1-responses for the threshold-adaptive, zero-drift
diffusion model in panel A, the expected decision time for
either type of response (without the contribution of the
residual latency T0) in panel B, and the expected rate of 1-
responses, B1, in panel C. Taking slices through the surface
in panel C by holding R2 fixed and letting R1 range from 0 to
infinity produces the quasi-hyperbolic functions of R1

defined by Eq. (15). All surfaces are shown as functions
defined for pairs of earned reward rates, R1 and R2 (R2 may
be interpreted as extraneous reward (Re) in a single-
schedule task, or as the reward rate for 2-responses in a
concurrent task).

Panel D shows a uniform sampling of reward rate pairs
that might be earned in many blocks of an experiment in
which the overall rate of reward is kept roughly constant by
the experimenter, but in which one response may be made
more rewarding than the other (as in Corrado et al. (2005));
each scatterplot point represents a single block. Each point
in panels E and F shows the proportion of 1-responses in a
block of 100 responses from the choice probability function
in panel A. The two reward rates ‘experienced’ in each 100-
response sample correspond to one of the 200 points in the
R1,R2 plane plotted in panel D. Panel E plots 1-response
proportion against the relative reward rate for 1-responses;
points falling on the diagonal from (0,0) to (1,1) adhere to
the strict matching law. Panel F plots the same data, but in
terms of behavior ratios vs. reward ratios, on a log–log scale;
points falling on any straight line in this plane adhere to
the generalized matching law (Baum, 1974). Note that
Herrnstein's hyperbola would produce a B1 surface in
panel C that would look identical in shape to the surface
in panel A — thus, it is the values of B1 corresponding to
values of R2 near 0 that disrupt the equivalence of the
threshold-adaptive DDM and the hyperbolic response rate
predictions of the matching law.

2.2.4. Response rate collapse in Model 1
The response rates of Model 1 and Model 2 are determined by
the decision time of the DDM. If we do not renormalize
thresholds, then we can abandon the implausible assumption
of constant response times made in Section 2.1.5. We can also
abandon the implausible assumption of constant Re, made in
Section 2.2.2, by modeling rewards for extraneous behavior as
we would in a two-choice task: whenever the lower threshold
θe is crossed, extraneous behavior is performed and Re either
increases or decreases.

However, whenwe do this, Model 1 produces a catastrophic
outcome: response rates on both alternatives ultimately
diminish to 0. This occurs because as Ri approaches 0, θi
approaches infinity (by Eq. (5)). Eq. (13) then implies that RT
also goes to infinity as long as θj,j≠ i does not approach 0 (i.e., as
long as Rj has some finite maximum).

In fact, both R1 and Re have finite maxima, because the
residual latency T0 ensures that both B1 and Be are finite
(and rewards are contingent upon behavior). Thus θ1 and θe
are bounded below at values greater than 0. At the same
time, reward rates for either behavior can be arbitrarily close
to 0, so that θ1 and θe (and therefore RT) are unbounded
above.

In VR–VR tasks, in fact, one response winds up being
selected exclusively by Model 1, just as it would be by
melioration per se. This leads to a reward rate of zero for that
response, and therefore, by the argument just given, complete
catatonia. Similar problems occur in VI–VI tasks even when
both options have been chosen in the last few trials, because
an unrewarded choice threshold accelerates when it inc-
reases, but decelerates when it decreases. This follows from
our use of a reward rate estimation process (Eq. 7) that
changes continuously in time.

2.2.5. Reward magnitude-independent response rates in
Model 2
The drift-adaptive, fixed-threshold model (Model 2) does not
have this problem in the regime of exclusive choice; when drift



5 That is, relative choice frequency is less than what matching
predicts for the response earning a higher rate of reward.

Fig. 5 – Expected behavior of a combination of Model 1 and Model 2, the DDM with both threshold and drift adaptation
(drift=d · (R1−R2), θi=ξ/Ri, with d=0.4 and ξ=0.5). Note the rotation once again of the plot in panel B relative to panel A and C,
and its truncation to 5 s. As with Model 1 alone, the absolute magnitude of obtained reward rates has little effect on the quality
of the approximation to strict matching.
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strongly favors one response over the other, the favored
response is made so much more rapidly than the less
preferred that overall response time is finite (see Fig. 4B).
Holding thresholds constant and adapting only drift instead
produces the converse problem ofmuch larger response times
near a 1:1 ratio of the two-response types (which is the ratio
expected when drift is near 0). Furthermore, expected
response rates are equal for all points on the line R1=R2,
even (0,0). Near the origin, though, the response rate of any
plausible model should go to 0 or at least decrease, since no
reward is being earned. Functionally, this is a less severe
problem than the response rate collapse produced by Model 1,
since Eq. 13 shows that a zero-drift model always has a finite
expected response time if thresholds are finite (note that the
B1 surface is above 0 everywhere along the R1 axis in Fig. 4C).
This response rate pattern is nevertheless quite implausible,
given the widespread finding that response rate increases as
reward rate increases. Furthermore, the IRT near R1≈R2 grows
arbitrarily large as thresholds grow large (or noise grows
small).

Therefore, in order for Model 2 to achieve reasonable
response times near a 1:1 behavioral allocation where drift
A is near 0 (i.e., R1≈R2), Eq. (4) may require thresholds
to be small, or noise to be large, or both. If noise is large
and thresholds are small, however, then the overall res-
ponse rate is high (and IRT is small) for all combinations
of reinforcement history (R1,R2). Also, substituting small
thresholds or large noise into Eq. (2) produces a shallow
sigmoid that can result in undermatching behavior5 in
experiments with approximately a fixed level of total re-
ward (corresponding, for example, to the scatterplot of re-
ward rate pairs in panel D of Figs. 3–5). Thus, for Model
2, either overall response rate is uniformly very high
regardless of reinforcement history, or dramatic slow-
downs in response rate occur near a 1:1 behavioral
allocation.

2.2.6. Model 1 and model 2 combined
Combining threshold and drift adaptation can mitigate these
IRT problems, just as combining them may be necessary
in order to fit choice proportions. As shown in Fig. 5, over-
all response rate is low and IRT is high near (R1,R2)=(0,0)
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(panel B), which is consistent with the observation that
animals cease responding in extinction (that is, when
rewards are no longer given for responses). Also, B1 is greater
than 0 when R2=0 and R1>0 (panel C). This too is closer to
what is seen empirically, and to what is predicted by the
matching law under the assumption of constant reward for
extraneous behavior.

The surfaces in Figs. 5B and C are somewhat deceptive,
though: they are based on expected DT as predicted by Eq. (4),
and this equation assumes a fixed threshold and drift. In
order for these surfaces to provide useful descriptions of the
system's behavior, the point (R1,R2) must change slowly
enough that the average response rate over multiple res-
ponses converges to nearly its expected value. An argument
based on iterated maps then shows that the system will in
fact reach an equilibrium somewhere (with the particular
equilibrium response rates depending on the reward sched-
ule) so that these figures are still useful. The problem is that
this equilibrium can easily occur at (R1,R2)=(0,0) as thresholds
increase over multiple trials. Even worse, a reward rate esti-
mate can collapse to nearly 0 (with the value of its corres-
ponding threshold on the next trial exploding to infinity)
within the course of a single, long response, and such long
responses are bound to occur eventually, even if they are
rare.

2.2.7. Threshold renormalization
We propose a threshold renormalization process that solves
both problems: it prevents single-trial threshold blow-ups,
and, across multiple trials, it breaks the system out of the
vicious circle in which lower reward rates lead to lower
response rates, which lead in turn to still lower reward rates in
VI and VR tasks. This approach uses an adaptive, drift
diffusion-based interval timer, defined by the following SDE,
to bound response times:

dx = nR + fð Þdt + cdW: ð16Þ

This diffusion process begins at 0 after every response and has
a positive drift that is proportional to the current reward rate
being earned from all responses (R=R1+R2), plus a positive
constant ζ that ensures a minimum rate of responding. With a
single fixed threshold K>0, the first-passage-time distribution
of this system is the Wald, or inverse Gaussian, distribution,
with expected time K / (R+ζ) and variance Kc2 / (R+ζ)3 (Luce,
1986).

Whenever an upper-limit IRT duration encoded by the
timer has elapsed without a response, the timer triggers a
rapid potentiation of both reward rate estimates: both
estimates are multiplied by a quantity that grows rapidly on
the time scale of an individual response time. This potentia-
tion increases, and thresholds concomitantly decrease, until
one response threshold hits the choice diffusion process at its
current position. At this point, both the choice drift diffusion
process and the timer start over again and race each other to
their respective thresholds. Thus, the choice diffusion process
frequently triggers a response before the IRT-limit has elapsed
on the next trial.

This model component solves the threshold-instability
problem, but it is modular and separable; it may be possible by
some method currently unknown to us to renormalize
thresholds without it.

2.2.8. Model performance in a dynamic VR task
Fig. 6 shows the entire system at work in real time on a
dynamic, concurrent VR–VR task. This task is prototypical
of economic game tasks performed by humans (e.g. ‘the
Harvard Game’, Herrnstein (1997), and Egelman et al. (1998)).
It is a classic example of dynamic reinforcement contin-
gencies that depend on a subject's previous response
history (Herrnstein and Prelec, 1991). One parameterization
of this task is depicted graphically in panel E. There, the
horizontal axis represents the percentage of leftward
responses made by a subject in the last n trials (in this
case, the typical value of 40), in a task involving left and
right button pressing (the percentage of rightward
responses is 100 minus this value). The vertical axis
represents the expected percentage of responses that are
rewarded with a unit of reward (variants of this scheme
involve basing either the magnitude of the reward, the
delay to reward delivery, or the interval between rewards
in a concurrent VI–VI task, on response history). The solid,
descending straight line plots the reward percentage
for leftward responses as a function of past response his-
tory; the ascending, dashed line plots the reward percent-
age for rightward responses. The curved dashed line
represents the expected value obtained at a given allocation
of behavior.

In this figure, Model 1 was simulated to illustrate the
effect of the adaptive interval timer (since Model 1 is the
most susceptible to response rate collapse) and to show
how close to the system is able to come to strict matching
(since only Model 1 produces exactly the right response
proportions to achieve strict matching). Panel A shows the
choice drift diffusion process iterated repeatedly within
boundaries defined by upper and lower thresholds, which
are in turn defined by the two reward rate estimates in
panel C. Individual response times generated by the model
are plotted at the time of their occurrence in panel B, and
the Gaussian kernel-smoothed empirical densities of
response times for left and right responses are shown in
panel F; these densities display the pronounced RT/IRT
difference between more and less preferred responses
that can develop for some parameterizations of the mo-
del. Panel E superimposes a scatterplot of a sequence of
leftward response proportions (horizontal coordinate) and
the corresponding reward earned (vertical coordinate) on
consecutive blocks of 40 responses, in the task defined
by the dynamic VR–VR schedules given by the straight
lines; points occurring closer to the end of the simula-
tion are darker. Thus the system quickly moves to the
matching point (the intersection of the two schedule
lines, which is the only possible equilibrium point for a
strict meliorator), but then moves around it in a noisy
fashion. This noisy behavior results from computing
response proportions inside a short time window, making
it difficult to distinguish Model 1 from Model 2 (Bogacz
et al., 2007) and related models (e.g., Montague and Berns,
2002; Sakai and Fukai, 2008; Soltani and Wang, 2006) in
this task.



Fig. 6 – Melioration by an adaptive-threshold, zero-drift diffusion model in a dynamic, VR–VR task (with threshold explosion
controlled by a drift diffusion timer). (A) The diffusion process over the course of many responses. The trajectory of the decision
variable is in black, causing Left responses whenever it intersects the upper threshold in red, and Right responses when it
intersects the bottom threshold in blue. At each response, it resets to 0 and begins to drift and diffuse again. A 5-sec window is
magnified in the inset. (B) The plot of inter-response times (IRTs) in seconds. At points where the IRTs jump to a large value, the
system is in danger of response rate collapse (which is prevented by the expiration of a drift diffusion response timer). (C) The
two reward rate estimates over time; large jumps indicate potentiation occurring because the response timer elapsed. (D) The
‘decision’ variable of the DDM timer, in black, and a fixed threshold in blue. Whenever the timer hits threshold, a weight
renormalization takes place. (E) The reward schedules for Left responses (red) and Right responses (blue) as function of
response proportions in the preceding 40 trials (expected reward is in grey). Dots show choice proportion and reward
proportion on the previous 40 trials, plotted once every 40 trials; light dots represent points near the beginning of the
simulation, while dark dots represent points near the end. (F) The IRT distribution for Left (red) and Right (blue) responses –
Right IRTs were on average much longer than those for the more preferred Left responses.

6 The IRT timer that we used to renormalize weights in Fig. 6
can also be implemented in a neural network, and its rate can be
adapted by tuning a single weight (Simen, 2008; Simen and Balci,
in preparation).
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2.3. Neural network implementation

The adaptive drift diffusion model can be implemented by a
simple, stochastic neural network. Here we build on key
results from a proof of this correspondence in Bogacz et al.
(2006). We use these results to show that drift adaptation is
achieved by changing a set of weights linking stimulus-
encoding units to response-preparation units. These latter
units prepare responses by integrating sensory informa-
tion and competing with other units preparing alternative
responses. We refer to these weights as stimulus–response
(SR) weights. We then show that threshold adaptation
is achieved by adapting a second set of weights linking
response-preparation units to response trigger units —
we refer to these as response–outcome (RO) weights (high-
lighting the fact that these weights are modulated in
response to outcomes of behavior, regardless of the current
stimulus).6
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2.3.1. Neural network assumptions
The neural DDM implementation of Bogacz et al. (2006) and
Usher andMcClelland (2001) rests on a simple leaky integrator
model of average activity in populations of neurons (cf.
Gerstner, 1999; Shadlen and Newsome, 1998; Wong and
Wang, 2006).

A single quantity, Vi(t), stands for a time-averaged rate of
action potential firing by all units in population i (action
potentials themselves are not modeled). In the same manner
as the reward rate estimator of Eq. (7) (but with a much faster
time constant), this time-average is presumed to be comput-
ed by the synapses and membrane of receiving neurons
acting as leaky integrators applied to input spikes. Reverber-
ation within an interconnected population is then presumed
to lead to an effective time constant for the entire population
that is much larger than those of its constituent components
(Robinson, 1989; Seung et al., 2000).

Each unit in the network is defined by the following system
of SDEs, which, aside from its stochastic component, is fairly
standard in artificial neural network modeling (Hertz et al.,
1991):

siddxi = �xi +
Xn
j = 1

wijdVj xj tð Þ
� �0

@
1
Adt + c

Xn
j = 1

dWij; ð17Þ

Vi yð Þ = 1
1 + exp �kid y� bið Þ½ � : ð18Þ

Eq. (17) states that momentary input to unit i is computed
as a weighted sum of momentary outputs (Vj) from other
units. This output is corrupted by adding Gaussianwhite noise
(dWij /dt),7 representing the noise in synaptic transmission
between units. This internally generated noisemay be large or
small relative to the environmental noise that is received from
the sensory periphery; for our purposes, all thatmatters is that
there are uncorrelated sources of white noise in the system.
For simplicity, we weight the noise by a constant coefficient c,
rather than potentiating it by the connection strength wij.
However, weight-dependent potentiation seems as plausible
as a constant coefficient, as does activity-dependent potenti-
ation that would cause the noise amplitude in a receiving unit
to depend on the firing rates of units projecting to it — we do
not yet know how such state-dependent noise would affect
our results.

This converging, noisy input is then low-pass filtered by the
unit to reduce the noise — that is, the unit's leaky integration
behavior causes it to attenuate, or filter out, high frequencies
(Oppenheim andWillsky, 1996). As in Eq. (7), the unit in Eq. (17)
computes the continuous time equivalent of an exponentially
weighted average, with smaller τi producing steeper time-
discounting; dividing through by τi shows that smaller τi also
produces less attenuation of noise. Thus xi(t) represents a
time-average of its net input that trades off noise attenuation
against the ability to pass high-frequency input signals.

This time-averaged value is then squashed by a logistic
sigmoid function (Eq. 18), to capture the notion that firing
7 Since dW/dt is in some sense an abuse of notation, we will use
the standard SDE notation in which dW appears by itself and is
interpreted in terms of the Ito calculus (Gardiner, 2004).
rates in neurons are bounded below by 0 and above by some
maximum firing rate—we will exploit this gradual saturation
effect in constructing response triggers.

Finally, amplification or attenuation of the outputs of a unit
are then implemented by the interconnection strengths wij.

In what follows, we will further assume that some units
operate mainly in the approximately linear range of the
logistic centered around its inflection point (Cohen et al.,
1990); in those cases, a linearized approximation to the above
equations is appropriate.

When linearized, Eqs. (17–18) can be combined into a
single, linear, SDE commonly known as an Ornstein–Uhlen-
beck (OU) process:

siddyi = �yi + Iið Þdt + cidWi: ð19Þ

(Note that without the negative feedback term −yi, Eq. (19) is a
drift diffusion process.) Here, Ii represents the net input to unit
i, and dWi refers to a Wiener process that is the net result of
summed noise in the inputs (as long as the noise in these
inputs is uncorrelated, this summing produces another
Wiener process, but with larger variance). Units of this type
were used in the DDM implementation of Bogacz et al. (2006),
but for our purposes, saturating nonlinearities in some units
will be critical features of the model.

2.3.2. Implementation of the drift diffusion model
Stochastic neural networkmodels have been related to random
walk and sequential sampling models of decision making
(including the DDM) by a number of researchers (e.g., Bogacz
et al., 2006; Gold and Shadlen, 2002; Roe et al., 2001; Smith and
Ratcliff, 2004; Usher and McClelland, 2001; Wang, 2002).

For a standard two-alternative decision making task — in
which each trial has one correct and one error response— one
unit acts as an integrator of evidence in favor of one hypo-
thesis about the correct response, and the other as an
integrator for the other hypothesis. Mutual inhibition creates
competition between the integrators, such that increased
activation in one retards the growth or leads to a decrease of
activation in the other (thereby forming a ‘neuron–antineuron’
pair). By using activations to represent ‘preference’ rather than
‘evidence’, however, the samemodel can be applied to operant
conditioning tasks.

A network of this type can be defined by a system of two
SDEs describing the activity of the two integrators over time.
The state of the system can then be plotted as a point in a two-
dimensional space called the phase-plane.

These SDEs in turn can be reduced to a single SDE
(Grossberg, 1988; Seung, 2003) which, when properly parame-
terized, or balanced (i.e., wlateral in Fig. (7) equals –1), approx-
imates the DDM (Bogacz et al., 2006). This single SDE describes
how the difference in activation between the two accumula-
tors, xd, changes over time. If the input to the first accumulator
is I1, and the input to the second is I2, then the SDE is:

sdddxd =
I1 � I2ffiffiffi

2
p dt + cdWd: ð20Þ

This equation describes how the state of the system moves
along a line through the phase-plane that Bogacz et al. (2006)



Fig. 7 – Threshold modulation for the drift diffusion model. On the left is a phase-plane for integrator activation.
Assuming that the network is balanced and that the integrators are leaky enough, then reductions of the
trigger-unit thresholds (Z1 and Z2) by size Δ are equivalent to reductions of size

ffiffiffi
2

p
D along the decision line. To ensure

that thresholds are not reduced below 0 on the decision line (the point where the ray from the origin intersects the decision
line), a compensating term must be added to the triggering thresholds. Note that if integrator activity is bounded
above by 1, then unlike the DDM itself, an absolute threshold value Zi>1 implies a total inability to produce response i.
The network on the right depicts units governed by Eqs. (17–18) as circles; positive interconnection weights wij are
depicted as arrowheads, and negative weights as small, solid circles; labels next to the arrowheads/circles identify the value
of each weight. Eq. (19) is a suitable approximation for the leaky integrator units at the bottom of the network
(they are assumed to remain in the linear range of their activation functions), but bistability (and therefore nonlinearity)
are essential aspects of the threshold-readout units at the top. White noise is added to the output of any unit after
weighting by a connection strength. The network depiction shows the weights that are modulated by reward,
along with the diffuse inhibition necessary to add the compensating factor to the thresholds; for simplicity, it does not
show units that would be necessary to carry out threshold renormalization by occasionally multiplying both RO weights by
a large constant.
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refer to as the decision line. The system rapidly approaches this
line from the origin, and then drifts and diffuses along it until
reaching a point at which one unit is sufficiently active to
trigger its corresponding response.8
8 When wlateral does not equal 1 and the accumulator network
is unbalanced, the system implements an OU process as in Eq.
(19). OU models of decision making are also prominent in the
response time literature (Usher and McClelland, 2001). If the
lateral inhibition is less than 1, then the feedback coefficient
multiplied by yi is negative, as in Eq. (19), and the expected value
of the process approaches an asymptotic value (if lateral
inhibition is 0, then the model approximates a race model, e.g.,
Vickers (1970)). If the lateral inhibition is greater than 1, then the
feedback coefficient (call it α), is positive, and the process tends
to blow up to positive or negative infinity. In both cases, if the
drift term (I in Eq. (19)) is 0, then the choice probability function is
a scaled error function (erf), or cumulative Gaussian (Bogacz et al.,
2006; Moehlis et al., 2004),, and the choice proportion ratio is:
P1 /P2=erf(θ2 ·√α /c)/erf(θ1 ·√α /c). A cumulative Gaussian is a sig-
moid function much like the logistic, and with α>0, the
explosiveness of the process tends to mitigate (though not
eliminate) the threshold blowup problem faced by Model 1 (this
problem is worsened with a stable OU process, α<0). This partial
solution is equivalent to thresholds that collapse toward 0 over
time (e.g., Ditterich (2006)). Thus, the more general class of OU
models are also promising as implementations of approximate
melioration.
Bogacz et al. (2006) also showed (effectively) that a small
time constant τd in a balanced model leads to tight clustering
of the two-dimensional process around the attracting decision
line.

When tight clustering occurs, we can ignore fluctuations
away from the decision line and think of the system as simply
drifting and diffusing along it. A simple geometric argument
(see Fig. 7) then shows that in the case of small τi, absolute
thresholds applied to individual integrator outputs translate
into thresholds θi for the drift diffusion process implemented
by xd as follows:

hi =
ffiffiffi
2
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d Zi �
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Here, Zi is an absolute firing rate threshold applied to unit i
(we will address a possible physical mechanism for threshold
‘readout’ below). Thus, any change to Zi leads to corresponding
changes in θi. This fact provides the basis for implementing
the threshold adaptation procedure of Model 1, discussed
below.

Fig. 8A shows an example of the evolution of a balanced
system over time. After stimulus onset in a decision making
task — or after reset to the origin following the previous
response in a VR or VI task without a ‘Go’ signal — the system
state (y1,y2) approaches the attracting decision line. Slower,



Fig. 8 –A two-stage neural network implementing a decision process. The first layer (bottom red and blue units) implements the
preference-weighing diffusion process: the two units' activations are plotted in the box A; these activations are then shown in
the phase plane in box B, which depicts the predicted attracting line for the two-dimensional process; box C shows the
difference between these activations over time, forming a one-dimensional random walk. The second, bistable layer of units
implements response–triggers that apply thresholds to this accumulated preference. Self-excitation w creates bistability by
transforming the sigmoid activation function from the black curve at the left of the activation surface plot in Box E into the green
function on the right. The resulting activity is approximately digital, with rates between 0 and 1 occurring only transiently at the
time of a threshold crossing.
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diffusive behavior occurs along this line, and as long as the
thresholds are stationary, the process will ultimately cross
one of them with probability 1. Projection of the state (y1,y2)
onto the decision line yields the net accumulated evidence
xd(t), which approximates the DDM as shown in Fig. 8C.

2.3.3. Drift adjustment by SR weights
As in the stochastic neural network models already men-
tioned, as well as in Grossberg (1971, 1982) and Grossberg and
Gutowski (1987), reward-modulated stimulus–response map-
pings are presumed to be encoded by the input weights
labelled ‘SR’ in Fig. 7. For typical VI and VR experimental
designs, we have assumed that there is only a single stimulus
that is continuously present. Thus, for simplicity, we set the
pre-weighted input to each integrator unit to 1 throughout the
course of a simulated experiment (inputs can be toggled
between 1 and 0 to model cued-response experiments). After
each response, we set each SR weight proportional to the
current estimate of reward rate for the corresponding res-
ponse. Inputs to each unit thus equal νRi(tL), where tL is the time
of the previous response, so that drift is given by the following:

A =
mR1 tLð Þ � mR2 tLð Þffiffiffi

2
p

:
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Again, we have assumed adaptation of Ri(t) in continuous time
by Eq. (7), but discrete updating of the weight based on the
current Ri value at the time of each response, as in Eq. (6). This
approach ensures stationary drift rates during a single res-
ponse, which is necessary in order for Eqs. (3–4) specifying
expected choice proportions and response times to be exact.
Nevertheless, these results are still approximately correct even
if we continuously adapt the weights, as long as reward rate
estimates do not change too rapidly during the preparation of
individual responses. In this respect, weights as well as units
have the exponential decay property of a capacitor or leaky
integrator, which is a feature of a number of synaptic plasticity
models (Hertz et al., 1991).

2.3.4. Threshold adjustment by RO weights
A threshold can be implemented by a low-pass filter unit with
a sigmoidal activation function if the unit's output is fed back
into itself through a sufficiently strong recurrent connection
wii (i.e., wii >λ /4 in Eq. (18)). As in the model of Wilson and
Cowan (1972), such units develop bistability and hysteresis as
self-excitation is increased (see Fig. 8E). In contrast, linear
units become unstable and blow up to infinity when self-
excitation is strong enough; a squashing function, however,
traps such an explosive process against a ceiling.

Because of this behavior, strongly self-exciting units can
function as threshold crossing detectors and response triggers:
below a critical level of input, their output is near 0 (i.e., the
value of approximately 0.3 labeled ‘Threshold’ on the Input
axis in Fig. 8E); above the critical input level, output jumps like
an action potential, to nearly the highest possible value.

Once activated, a threshold unit then displays hysteresis,
remaining at a high output level for some period of time even
if inputs decrease.
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Response–trigger units therefore implement energy bar-
riers that accumulated evidence or preferencemust surmount
in order to generate a punctate response. This is ideal behavior
for a circuit element that makes an all-or-none decision about
whether to initiate a sequence of muscle contractions. The
activation of such a response trigger varies continuously, as
we should expect from any plausible model of a physical
mechanism. Nevertheless, at all times other than when input
signals have recently exceeded threshold, response–trigger
outputs are far from the levels needed to contract muscles.
Furthermore, this hysteresis property can be used to control
the emission of ‘packets’ of multiple, rapid responses, rather
than the individual responses onwhichwe have so far focused
attention: as long as a trigger's output is high, a fast oscillator
can be toggled on by the response–trigger output to produce
high-rate responding. Such packets of high-rate responding
are often observed in conditioning experiments (e.g., Church
et al., 1994).

These properties are important for a physical implemen-
tation of thresholds. For ease of analysis, though, thresholds
can still be modeled with sufficient accuracy to predict
behavior as simple step functions. The critical level of input
necessary to cause a response trigger unit to transition
between the low- and high-activation states (about 0.3 in Fig.
8E) can be considered to be a simple threshold applied to
integrator outputs. This fact makes threshold adaptation easy
to understand: from the perspective of an integrator unit (one
of the bottom units in the network diagrams of Figs. 7 and 8),
this threshold Z is reduced by m if an amount m of additional
excitation is supplied to the threshold unit on top of the
excitation provided by the integrator. Similarly, if the excit-
atory weight connecting an integrator to a threshold unit with
threshold Z is multiplied by γ, then the effective threshold for
the integrator becomes Z /γ.

Therefore, by multiplying the RO weights by an estimate of
reward rate for the corresponding response, Ri, our threshold
adaptation algorithm can be directly implemented. The only
remaining issue stems from the fact that the effective DDM
threshold θi is an affine function of the absolute firing rate
threshold Z (Eq. (21)). In order tomake θi inversely proportional
to Ri, wemust cancel the additive term by adding (I1+ I2) /4. We
can do this simply by inhibiting the response–trigger units by
exactly this amount. This need to cancel motivates our use of
a collector of diffuse, excitatory input to provide pooled
inhibition to both response–triggers (see the middle unit in
the network of Fig. 7). Bogacz and Gurney (2007) similarly used
diffuse, pooled inhibition to generalize a neural implementa-
tion of the DDM to an asymptotically optimal statistical test
for more than two decision making alternatives; Frank (2006)
used pooled inhibition to implement inhibitory control; and
Wang (2002) used it simply to implement a biologically realistic
form of lateral inhibition between strictly excitatory units.
3. Discussion

We have analyzed an implementation of melioration by an
adaptive drift diffusion model. Adaptation is achieved by
estimating the rate of reward earned for a response through a
process of leaky integration of reward impulses; reward rate
estimates then weight the input signals to a choice process
implemented by a competitive neural network with a bistable
output layer. Weighting signals by reward rate amounts to
adapting the threshold (Model 1) and drift (Model 2) of the
DDM, which is implemented by the neural choice network
when the network's lateral, inhibitory weights balance the
‘leakiness’ of the leaky integration in its input layer (Bogacz
et al., 2006). Diffusive noise in processing then leads to
random behavior that can serve the purpose of exploration.

Our attempt to blend operant conditioning theory and
cognitive reaction time theory has historical antecedents in
the work of researchers in the behaviorist tradition (Davison
and Tustin, 1978; Davison and McCarthy, 1988; Nevin et al.,
1982) who have linked operant conditioning principles with
signal detection theory (SDT; Green and Swets, 1966). Indeed,
SDT is ripe for such an interpretation, given its reliance on
incentive structures to investigate humans' low-level signal
processing capabilities. Our work is part of a natural extension
of that approach into decision making that takes place over
time, producing RT/IRT data which is not normally considered
in SDT.

In addition to serving as a bridge between melioration and
a possible neural implementation, the adaptive DDM makes
quantitative predictions about inter-response times as well as
choice probabilities in operant conditioning experiments
with animal subjects, and economic game experiments with
human subjects. Response times and inter-response times are
a valuable dependent variable in such tasks that can help to
elucidate the mechanisms underlying choice. Indeed, al-
though choice-RT and IRT data in concurrent tasks seem to
have received less attention than response proportions in the
animal behavior literature, RT and IRT data have occasionally
been used to distinguish between alternative models of
operant conditioning (e.g., Blough, 2004; Davison, 2004).

Data from both of these articles included long-tailed RT/IRT
distributions that appear log-normal or ex-Gaussian —
approximately the shape predicted by the DDM. Blough
(2004) specifically fit RT distributions with a DDM and found
better evidence for adaptation of drift as a function of reward
rate rather than of threshold. In addition, monkey RT data and
neural firing rate data from the motion discrimination,
reaction time experiment of (Roitman and Shadlen, 2002)
have been taken to support both the DDM and neural inte-
grators of the type we have discussed as models of decision
making (cf. Gold and Shadlen, 2001).

In a replication of the human economic game experiment
of Egelman et al. (1998) andMontague and Berns (2002), Bogacz
et al. (2007) found clear evidence of an RT effect as a function
of an enforced delay between opportunities to respond. As the
delay interval grew, mean RT also grew. For delays of 0 ms,
750ms and 2000ms, average inter-choice times (including the
enforced delay) were 766 ms, 1761 ms and 3240 ms respec-
tively. This corresponds to average RTs of 766 ms, 1011 ms,
and 1240ms respectively. This is a profound effect on RT by an
independent variable — enforced inter-trial delay — that had
no obvious effect on relative reward rates or observed choice
probabilities, and is therefore completely outside the scope of
models of behavioral reallocation such as melioration. Bogacz
et al. (2007) gave a compelling account of choice probabilities
in this task in terms of a drift-adaptive DDMwith reward rates
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updated only after each response,9 but fits of that model did
not take RT data into account and produced parameters for
which RTs must be greater than those observed. When we
examined the performance of a threshold-adaptive, zero-drift
diffusionmodel with similarly discrete reward rate updates in
this task,10 it achieved fast enough RTs but exhibited a
tendency toward exclusive preference for one or the other
response that was not observed in the data. Thus, it seems
likely that combining threshold and drift adaptation and/or
including an adaptive timing mechanism would give a
significantly better fit to choice and RT data taken together.
In addition, the delay-dependent RT results of Bogacz et al.
(2007) appear to call for a version of the adaptive DDM inwhich
internal estimates of reward rate decay during the delay
period (as in Eq. 7) and concomitantly, drift decreases and/or
thresholds increase.

Both the adaptive-drift and adaptive-threshold versions of
the DDM predict that RTs and IRTs must be longer for the less
preferred choice in a two-choice task, and this qualitative
relationship is seen in both animal and human behavioral
data (Blough, 2004; Busemeyer and Townsend, 1993; Petrusic
and Jamieson, 1978). We take these and other behavioral
results as strong evidence that adaptive random walk models
may provide an account of dynamical choice behavior on a
trial-by-trial level that is furthermore explicit in the following
sense: as an SDE, it specifies the state of the choice process
from moment to moment.

This explicit character of diffusion-implemented meliora-
tion lends itself naturally to theorizing about the physical
mechanisms underlying choice. In addition to efforts in
theoretical behaviorism, much recent empirical and theore-
tical work in neuroeconomics has been devoted to under-
standing these mechanisms. In particular, a variety of
explicitly neural models of choice in response to changing
reward contingencies have been proposed (e.g., Grossberg and
Gutowski, 1987; Montague and Berns, 2002; Soltani andWang,
2006). Most share a common structure: input weights leading
into a competitive network aremodified in response to reward
inputs, leading to choice probabilities that are a logistic/
softmax or otherwise sigmoidal function of the difference
between input weight strengths (and thus of the difference
between expected reward values). A key distinction of the
neurally implemented threshold-adaptive DDM (Model 1) is
that it includes reward-modulated weights at a later, output
stage of processing in the network, and can thereby formally
achieve exact matching. In its location of reward-modulated
synapticweights, thismodel is structurally similar to themore
abstract neural model in Loewenstein and Seung (2006),
whose synaptic strengths are modified by a more general
(but probably more slowly changing) process that acts to
reduce the covariance of reward and response, and which can
also achieve exact matching in tasks not involving continuous
time (VI tasks, for example, do not appear to be within the
scope of this covariance-reduction rule).
9 Importantly, their model also included an accumulating
eligibility trace (Sutton and Barto, 1998), which is a method for
crediting a part of each reward to every response, in proportion to
the relative rate of that response.
10 We also included an eligibility trace in these simulations.
When choice proportions in empirical data do not clearly
distinguish between input-stage and output stage models, the
best way to distinguish them (or to identify the relative
contributions of input and output weights) may be to fit both
choice and RT/IRTdata simultaneously.

3.1. Mapping on to neuroanatomy

The model family that we have presented provides a generic
template for reward-modulated decision making circuits in
the brain.

By positing that connection strengths are equivalent to
reward rate estimators, the model represents a theoretical
view of synapses at the sensory–motor interface as leaky
integrators of reward impulses. An alternative view is one in
which population firing rates, rather than synaptic strengths,
represent these integrated impulses (e.g., firing rates directly
observed in monkey anterior cingulate cortex, (Seo and Lee,
2007), and perhaps indirectly in a host of human brain imaging
experiments, (Rushworth et al., 2004)). Under the assumptions
of Eq. (17), this alternative view seems more consistent with
the affine threshold transformation of Simen et al. (2006) than
the multiplicative weight adaptation of Models 1 and 2;
however, if firing rate representations can act multiplicatively
rather than additively on decision making circuits, then a
synaptic weight and a population firing rate become func-
tionally equivalent.

In any case, diffuse transmission of reward impulses is
central to both approaches. The prominent role of the basal
ganglia in reward processing and action initiation therefore
suggests that reward-modulated sensory–motor connections
may map onto routes through these subcortical structures.
Bogacz and Gurney (2007) and Frank (2006) hypothesize that
the subthalamic nucleus in the basal ganglia controls res-
ponding by supplying diffuse inhibition to all response units,
and Lo and Wang (2006) also attribute control functionality to
the basal ganglia in a model of saccade thresholds. Given that
both the excitatory and inhibitory paths in Fig. 7 must be
potentiated by reward, we speculate that the excitatory and
inhibitory pathways in our model may map onto cortex
and the basal ganglia as follows: SR weights correspond
to cortico-cortical connections (consistent with reward-mod-
ulated firing rates observed in monkey lateral intraparietal
cortex, e.g., Platt and Glimcher, 1999); RO weights correspond
to direct pathway cortico-striatal connections; and compen-
satory weights correspond to excitation of the indirect
pathway through the basal ganglia (Alexander et al., 1986).
The mapping we propose assumes that the direct pathway
through the basal ganglia is parallel and segregated, but that
the indirect pathway is not. Alternatively, the subthalamic
nucleus may play a diffuse inhibition role here that is
analagous to that proposed in Bogacz and Gurney (2007) or
Frank (2006).

The multi-stage architecture of this brain circuitry lends
itself to multiple-layer models. However, splitting intomultiple
layers and using integrator-to-threshold weights are also
functionally necessary in our model, because threshold behav-
ior (bistability and hysteresis) cannot be obtained from the drift
diffusion process itself — and without nonlinear energy
barriers, any buildup of activation in decision units would
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produce proportional, premature movement in response
actuators such as eye or finger muscles. In contrast, other
neural models lump both integration and threshold function-
ality into a single layer of bistable units. For each response,
these models implement a nonlinear stochastic process with
an initially small drift, followed by a rapid increase in drift after
reaching a critical activation level (e.g., Soltani andWang, 2006;
Wong and Wang, 2006). Analytical RT predictions for such
models are not currently known, and it may be possible to
approximate such systems with idealized two-layer models for
which analytically tractable RT predictions exist. However, we
were originally motivated to split the system into two layers—
rather than to lump the integration and threshold functions
into one layer — by the results of Bogacz et al. (2006), who
argued for starting point/threshold modulations without drift
modulation in certain decision making tasks in order to
maximize reward. See other arguments in favor of splitting
over lumping in Schall (2004). Nevertheless, lumping layers
together clearly cannot be ruled out, and a single layer model
seems more economical in resources and more parsimonious
in parameters than a two-layer model.

In general, the additional layer in our model might earn its
keep in at least two ways:

1. It might help to earn greater reward: using extra degrees of
freedom may allow a closer approach to exact matching
than is possible with single layer models that produce a
sigmoid choice probability function (e.g. Montague and
Berns, 2002; Soltani and Wang, 2006). Strict matching
amounts to balancing the rate of returns on competing
behaviors precisely, and this often leads to near-maximi-
zation in contexts with diminishing marginal returns
(Williams, 1988). Sigmoid choice functions can only ap-
proximate this precise balance.

2. If the two layers of weights have different time scales of
adaptation, it might alleviate the problem of multiple time
scales in which a stimulus (e.g., the look, sound or smell of
a Skinner box) predicts an average reward level that
changes slowly over time, whereas specific response–
outcome contingencies within that environment might
change rapidly. Furthermore, if SR mappings are difficult
to learn, then it might be easier to preserve them in the
face of rapidly changing RO contingencies if those con-
tingencies are encoded in a second set of RO weights with
greater plasticity.

An experiment that could help to distinguish between
multiple-stage and single-stagemodels would be one inwhich
reinforcement was contingent on a stimulus–response map-
ping (e.g., the colored–light/saccade–target pairing in Corrado
et al. (2005) and Lau and Glimcher (2005)), but in which the
stimulus was correlated with the response. For example, the
frequencywithwhich the better-rewarded red target appeared
at, say, 0° of visual angle, as opposed to 180°, could be
manipulated. Suppose that red has recently appeared at 0°
many times, and has frequently been chosen and rewarded.
Now red appears at 180°. If a bias toward 0° saccades persists,
then that might be interpreted as evidence for an RO encoding
separate from an SR encoding, whereas absence of bias would
be evidence against it.
3.2. Stochastic behavior

We have presented a model that is fundamentally stochastic.
However, it seems perfectly reasonable to assume, on the
contrary, that fully deterministic processes underlie choice
behavior, and that the research goal of linking psychological
and neuroscientific approaches to the study of decision
making is best served by deterministic theoretical models.
We are agnostic on this point: stochastic models may serve
merely as useful compressions of vastly elaborate determin-
istic processes into a few, simple, stochastic differential
equations (consider the enormous value of statistical me-
chanical concepts like temperature and pressure, even within
the classical, deterministic physics of the eighteenth century);
or the stochastic aspect of our model may represent behav-
ioral-level effects of fundamental quantum randomness at
the level of synapses (discussed, e.g., in Glimcher (2005)). It is
clear though that random behavior can indeed be adaptive,
since much of life involves competition between agents that
are capable of modeling each other's intentions; game
theoretic results indicate that random behavior is optimal in
many such circumstances (Nash, 1950; Von Neumann and
Morgenstern, 1944). See recent accounts of behavior that, in
accord with these results, is indistinguishable from truly
stochastic performance (Barraclough et al., 2004; Busemeyer
and Townsend, 1993; Neuringer et al., 2007) and a review of
these in Glimcher (2005), as well as arguments based on
parallels between the Darwinian evolution of organisms and
the mutation and selection of behaviors within an organism
(e.g., Staddon, 2001).

We note also that the concept of internally-generated
noise is consistent with theories that specifically address the
tradeoff between the exploration of new behaviors and the
exploitation of old, successful behaviors. These theories
(Aston-Jones and Cohen, 2005; Cohen et al., 2007; McClure
et al., 2006) address the tradeoff in terms of brain mechan-
isms and neuromodulators. With more noise comes a greater
chance of choosing options that have not been recently
rewarded; indeed, without some means of trying new
behaviors, operant reward contingencies can never be
discovered in the first place. According to one theory of the
functional role of norepinephrine (NE) in the brain (Aston-
Jones and Cohen, 2005), NE transmission causes a receiving
neuron to steepen its firing rate/input (FI) curve in the
approximately linear region of the curve. In the case of units
with a sigmoid activation function, gain increases can serve
to lower effective response thresholds (Cohen et al., 1990) and
improve performance in a chain of linked units (Servan-
Schreiber et al., 1990). Gain increases in linear units with
noisy inputs also lead to greater noise in a unit's outputs, so
that a mechanism for noise amplification may arise from the
action of NE on cortical neurons. A complementarymechanism
for noise reduction is an inescapable consequence of leaky
integration, which is frequently hypothesized as a function of
populations of neurons (Shadlen and Newsome, 1998; Usher
and McClelland, 2001).

In fact, matching andmelioration amount tomaking a very
specific exploration/exploitation tradeoff that approximately
maximizes reward in a variety of experimental paradigms
(Williams, 1988). A corollary of the matching law is that
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animals allocate their investments in behavior (e.g., lever
presses or keypecks per second) in such a way that the returns
on those investments (e.g., food pellets earned per keypeck)
are equal:
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This property makes melioration particularly well suited to
environments in which reward contingencies are dynamic,
and this is always the casewhen there are diminishing returns
for persistent behavior (e.g., foraging in a location with finite
resources). In the exploration/exploitation tradeoff specified
by matching, more rewarding responses are produced more
frequently, but less rewarding responses are also sampled
with a frequency proportionate to their expected value, so that
unexpected increases in their value can be detected. What the
additional parameters of the adaptive DDM allow is a range of
similar tradeoffs that provide the same responsiveness to
dynamic contingencies, and that include matching as a
special case.

It is worth noting, however, that in many specific tasks,
matching and melioration do not produce optimal perfor-
mance. Fig. 6E is a case in point. Here, melioration's equi-
librium choice allocation of roughly 80% Left responses — the
matching point at the intersection of the two reward schedule
lines — produces a lower expected reward percentage than
what could be obtained with 50% Left responses. Indeed, this
property of melioration makes it suitable as a theory of
behavior that is usually adaptive, but that also includes such
obviously suboptimal patterns as addiction (Herrnstein and
Prelec, 1991, 1997).

We have shown that diffusive noise in a neural network is
sufficient to produce implementations of classic models of
conditioning and simple decisionmaking that have been used
to explain a wealth of behavioral data, and increasingly,
neurophysiological data. Given that noise is potentially so
useful, that it is in plentiful supply in the form of thermal
energy in the brain, and that the mechanisms needed to
amplify and attenuate it can be so simple, we speculate that
properly generating, managing and using ‘noise’ may be a
central feature of brain function.

3.3. More than two alternatives

The analytical expressions that we have used for the choice
probability and response time of the DDM (Eqs. 2–4) are known
only for two-alternative tasks; choice probabilities and
expected response times (hence response rates) in tasks
involving three or more alternatives are solutions of partial
differential equations for which there appear to be no known,
closed form solutions (Gardiner, 2004). We have numerically
simulated three and four dimensional diffusion processes
with 0 drift and thresholds inversely proportional to reward
rates. Such processes are again the abstract equivalent of
processing in a leaky competing accumulator network with
more than two channels (McMillen and Holmes, 2006).
Interestingly, in dimensions three and greater, exactmatching
does not seem to be the equilibrium state even for the
adaptive-threshold, zero-drift diffusion model (Model 1),
which produces exact matching in two dimensions. Instead,
overmatching appears to be the inevitable result: choices
producing more than the average amount of reward are
selected with a frequency that is greater than predicted, and
choices producing less than the average are less frequently
selected.

However, the generality of thematching law implied by Eq.
(1) for arbitrary numbers of response alternatives is question-
able, since experiments with animals involving three or more
responses appear to be rare (indeed, even in two-alternative
tasks, violations of the strict matching law are frequent
enough to motivate the use of the generalized matching
law). At the very least, they are vastly outnumbered by studies
involving only two responses (note the absence of references
to such work in comprehensive reviews such as Davison and
McCarthy (1988), Herrnstein (1997) and Williams (1988)).
Simulations therefore suggest that, in addition to making
quantitative RT and IRT predictions in operant conditioning
tasks, the threshold-adaptive, zero-drift diffusion model
makes a novel prediction about choice probabilities in a task
design that is not well-explored: namely, that at equilibrium,
overmatching should universally be the case in tasks with
three or more responses.

A multi-alternative circuit of the type we have investi-
gated can also be used to model behavior in an economic
game task that has been investigated with human subjects
— the n-armed bandit task. Daw et al. (2006) examined
brain activity and behavior in such a task, and found that
the optimal Kalman filter-based model for that task did not
fit the data well — an optimal approach to reducing
uncertainty about unexplored options was not observed.
Once again, however, a softmax function was found to fit
behavior better than the alternative choice models investi-
gated, a result that is consistent with a diffusion model of
choice. Our hope is that an n-channel version of the model
we have proposed may help to explain behavior in such
tasks as an n-dimensional melioration process, with an
exploration/exploitation tradeoff driven largely by a process
that effectively compares recent rates of return for each
option. Such a model would continue to combine the
abilities of classic theoretical models from the behaviorist
and cognitive traditions to explain choice probabilities and
response times, and of neural models to account for
electrophysiological recording and imaging data from the
brain.
4. Experimental procedures

Simulations of all SDEs in the paper were done with Euler–
Maruyama method (Gardiner, 2004):

dx = f x; tð Þddt + cddW
Zxt + Dt = xt + f x; tð ÞdDt + cd

ffiffiffiffiffi
Dt

p
dN 0;1ð Þ: ð24Þ

Our choice of Δt was sufficiently small that, in most cases,
at least a hundred time steps occurred for each threshold
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crossing of the DDM (when Δt grows larger than this, the
approximation develops a considerable deviation from the
behavior of the continuous process).
Appendix

A. Equivalence of discrete-time system to melioration

Formally, melioration is defined in terms of a cost function,
RD, that an animal always seeks to minimize by re-allocating
behavior (Herrnstein, 1982):

RD =
R1

t1
� R2

t2
: ð25Þ

Here, ti is the proportion of some total time of an experiment,
T, during which only behavior i is performed (0< ti<1). In a
strictly two-alternative task, t1=1− t2. Herrnstein and col-
leagues defined melioration in terms of proportions of time
and assumed that the rate of behavior Bi (in, e.g., responses/s)
was proportional to ti, the time allocated to behavior i (in
seconds): Bi=biti. Thus Eq. (25) can be reframed easily as
follows:

RD =
R1

B1
� R2

B2
: ð26Þ

Herrnstein and Vaughan (1980) describedmelioration verbal-
ly as involving the following: whenever RD>0, increase t1 (which
reduces R1/t1 and brings RD closer to 0). Similarly, whenever
RD<0, increase t2 (which amounts to reducing t1 since t1+t2=1).
This verbal statement canbe formalizedasa simpleproportional
feedback control law that attempts to minimize |RD|:

:
t1 = gRD Z

:
RD = � gRD; g;g > 0: ð27Þ

This differential equation can be easily transformed into a
discrete-time difference equation that updates average behav-
ioral allocations (by changing thresholds) in a punctatemanner:

t1new = t1old + adRDold : ð28Þ

Here we show that the threshold renormalization scheme
used to ensure constant response rates in Section 2.1.5
produces behavior that is formally equivalent to melioration:

h1 n + 1ð Þ = n
R1 nð Þ dF: F normalizes for constant RTð Þ ð29Þ

Suppose RD>0. By Eq. 25, this implies:

R1ðnÞ
B1ðnÞ >

R2ðnÞ
B2ðnÞZ

R1ðnÞ
R2ðnÞ >

B1ðnÞ
B2ðnÞ : ð30Þ

Eqs. 29-30 and the fact that B1ðnÞ
B2ðnÞ =

h2ðnÞ
h1ðnÞ together imply:

h2ðn + 1Þ
h1ðn + 1Þ >

h2ðnÞ
h1ðnÞZ

B1ðn + 1Þ
B2ðn + 1Þ >

B1ðnÞ
B2ðnÞ : ð31Þ

This is equivalent to saying that if RD>0, then increase t1.
B. First-passage probabilities for Model 1

Eq. (3), repeated here, gives the probability of a first-passage
through the lower threshold of the DDM:

hERi = 1
1 + e 2Az=c2ð Þ �

1� e�2y0A=c2

e2Az=c2 � e�2Az=c2

 !
:

The first-passage probability of the diffusion model with
zero drift (Model 1) is the limit of 〈ER〉 as the drift term A goes
to 0:

limAY0hERi

= limAY0
1

1 + e2Az=c2
� 1� e�2y0A=c2

e2Az=c2 � e�2Az=c2

 !

= limAY0
�e�2Az=c2 � 1 + e�2y0A=c2 + e2A z�y0ð Þ=c2

e2Az=c2 + e4Az=c2 � e�2Az=c2 � 1

 !

=
0
0
:

Applying L'Hopital's rule gives the following:

lim
AY0

hERi

= lim
AY0

2z
c2
e�2Az=c2 � 2y0

c2
e�2y0A=c2 + 2 z� y0ð Þ

c2
e2A z�y0ð Þ=c2

2z
c2
e2Az=c

2
+ 4z

c2
e4Az=c

2
+ 2z

c2
e�2Az=c2

 !
ð32Þ

=
2z� 2y0 + 2 z� y0ð Þ

8z

=
z� y0
2z

: ð33Þ

We proposed a variable translation that set the starting
point to 0 for every response, and moved thresholds (θi)
independently of each other:

h1 = z� y0; h2 = y0 + z:

This translation along with Eq. (33) implies that the
probabilities for first-passage through the upper threshold (Pθ1)
and through the lower threshold (Pθ2) are:

Ph1 =
h2

h1 + h2
; andPh2 =

h1
h1 + h2

: ð34Þ

C. Expected first-passage time for Model 1

The expected decision time of the zero-drift diffusion model
(Model 1) is obtained by computing a Taylor series expansion
of Eq. (4), which gives the average decision time for the DDM,
and then once again letting A go to 0:

hDTi = z
A
tanh

Az
c2

� �
+

2zd 1� e�2y0A=c2
� �

Ad e2Az=c2 � e�2Az=c2
� �� y0

A

0
@

1
A:

Replacing the hyperbolic tangent function with an expres-
sion in terms of exponentials gives the following:

hDTi = z
A

exp 2Az=c2
� �� 1

exp 2Az=c2ð Þ + 1

� �
+

2z
A 1� exp �2y0A=c2

� �� �
exp 2zA=c2ð Þ � exp �2zA=c2ð Þ �

y0
A

� �
:
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Now we treat the two terms in this sum separately,
considering each as a function of A and taking their Taylor
expansions up to second order terms:

Term 1 =
z
A
d

1 + 2Az=c2 +O A2
� �� 1

1 + 2Az=c2 +O A2ð Þ + 1

� �

=
z
A
d

2Az=c2 +O A2
� �

2 + 2Az=c2 +O A2ð Þ
� �

=
z
A
d

2Az=c2 +O A2
� �

2 1 +O Að Þð Þ
� �

=
z
A

Az
c2

+O A2� �� �
:

Term 2 equals:

1
A

2z 1� 1� 2y0A=c2 + 1
2 2y0A=c2
� �2 + N

� �� �
1 + 2zA=c2 + 1

2 2zA=c2ð Þ2 + N
� �

� 1� 2zA=c2 + 1
2 2zA=c2ð Þ2 + N

� � � y0

0
BBBB@

1
CCCCA

=
1
A

2z 2y0A=c2 � 2y20A
2=c4 + N

� �
4zA=c2 +O A3ð Þ � y0

� �

=
y0
A

2z 2A=c2 � 2y0A2=c4 + N
� �

4zA
c2 1 +O A2ð Þð Þ � 1

 !

=
y0
A

4zA=c2
� �

1� y0A=c2 + N
� �

4zA=c2ð Þ 1 +O A2ð Þð Þ
� �

=
y0
A

1� y0A
c2

+O A2� �� �
� 1

� �

= � y20
c2

+O Að Þ:

The limit of Term 1 as A goes to 0 is z2 /c2. The limit of Term
2 as A goes to 0 is −y0 /c2. This implies:

DT =
z2

c2
� y20

c2
=
z2 � y20

c2
:

After changing variables, this gives:

z =
h1 + h2

2

y0 = h2 � h1 + h2
2

Z
z2 � y20

c2
=

h1 + h2
2

� �2
� h2 � h1 + h2

2

� �2
c2

=

h1 + h2
2

� �2
� h22 +

h1 + h2
2

� �2
�2h2h1 + h2

2

	 

c2

=
�h22 + h2h1 + h22

c2
=
h1h2
c2

ð35Þ

D. Individual response rate is proportional to overall response rate

The following variables denote all the relevant quantities:

RTi=expected RT for response i (decision time+T0, s);
<RT>=overall average RT (s);
bi=local rate of behavior i (responses/s)=1/RTi;
ti=proportion of time T devoted to behavior i (unitless);
Bi=global rate of behavior i (responses/s)= ti ·bi;
<B>=overall average behavior rate (responses/s);
T=total time in experiment (s).
Overall response rate, hBi = 1=hRTi, is the harmonic mean of
the two individual response rates:

hRTi = P 1ð ÞRT1 + P 2ð ÞRT2;

ZhBi = 1
hRTi =

1
P 1ð ÞRT1 + P 2ð ÞRT2

;

=
1

P 1ð Þ
b1

+
P 2ð Þ
b2

n ·P(i) ·RTi= ti ·T is the expected amount of time devoted to
behavior i given n responses of either type in T seconds.
ndhRTi=expected size of T after n responses.

The proportion of time T allocated to behavior i is given by
the following approximation:

Ztic
ndP ið ÞdRTi

ndhRTi =
P ið ÞRTi

hRTi : ð37Þ

This in turn implies the following:

Bi = biti =
ti
RTi

=
P ið ÞRTi

hRTi d
1
RTi

=
P ið Þ
hRTi : ð38Þ
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