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In these Supplementary Materials, we describe additional
neural mechanisms needed to justify certain details of the tim-
ing model described in the main text, and we supplement the
human behavioral evidence for rapid duration learning with ev-
idence from mice performing a timing task. As discussed in
section 1, the additional neural mechanisms include a network
that performs temporal differentiation to decode the time left
before an upcoming event, and a feedback controller that uses
differentiation to stabilize the integrator dynamics of the timing
model. In section 2, we derive the linear noise assumption used
in the main text from the sigmoidal activation function of our
leaky integrator model of neural population activity. Section 3
demonstrates that the presence of a lower reflecting boundary in
a drift-diffusion model of neural activity still leads to an approx-
imately inverse Gaussian distribution of response times (RTs),
despite the strict dependence of this inverse Gaussian shape on
the absence of such a bound. In section 4, we consider a spec-
trum of alternative models of noise in neural activity, and we
consider the ways in which these alternatives could affect our
explanation of scalar invariance in terms of competitive Pois-
son shot noise (provided in the main text). In section 5, we
present additional evidence for rapid learning of new interval
durations in mice. Finally, section 6 shows the performance of
the model on the Beat-the-Clock task.

1. Neural mechanisms for differentiation and integration

1.1. A neural mechanism for temporal differentiation

It may be useful to take derivatives of ramping activation in
a neural integrator to recover the inputs to that integrator, and
to tune the properties of that integrator (one means of which we
demonstrate in Sec. 1.2).

We compute ramp slopes by differentiating ramp-unit acti-
vations with respect to time. The differentiator circuit we pro-
pose is quite simple, involving one extra stage of leaky integra-
tion followed by a weighted subtraction operation. This mecha-
nism implements Euler’s method for approximating a derivative
by sampling a function g(u) at two different points u1 and u2 and
dividing g(u2)− g(u1) by u2 − u1. The circuit accomplishes this
by imposing a delay on a signal, then subtracting the delayed

version from the original and dividing the result by the delay
magnitude:

dx
dt
≈

x(t + ∆t) − x(t)
∆t

. (1)

This circuit takes advantage of the ‘group delay’ that a leaky
integrator imposes on the signals that propagate through it. Group
delay (Oppenheim and Willsky, 1996) is the duration of the time
delay that is imposed on each narrow frequency band of the in-
put signal to a filter. When the input signal is a ramp, the output
of a leaky integrator asymptotically approaches the same ramp
delayed in time.

The system of 3 units shown in Supplementary Fig. 1a, with
activations x1(t), x2(t) and x3(t), can compute an approxima-
tion of the derivative of x1(t) as long as x1(t) does not vary
too quickly. Specifically, given a constant input signal Ã, (cor-
responding to drift A), which is the normal operating regime
of the SRT timing model, the output of this derivative circuit
asymptotically approaches A over time. The circuit is formally
specified as follows:

ẋ1 = A (2)

ẋ2 = −x2 +
k − 1

k
· x2 +

1
k
· x1

ẋ3 = −x3 +
x1 − x2

k

It is clear that the solution for x1 when A is constant is x1(t) =

A · t + c1 (with x1(0) = c1). The system is simple enough that it
can be solved one variable at a time.

For x2(t) we obtain:

x2(t) = A −
c2

k
e−t/k − x3, (3)

and for x3(t), we obtain:

x3(t) = A −
c2

k − 1
e−t/k + c3e−t. (4)

Therefore limt→∞ x3(t) = A, as illustrated in Supplementary
Fig. 1b. In this way, the average duration-encoding weight of
the SRT timing model can be translated into the activation x3(t)
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Figure 1: a: A circuit for differentiating low-frequency signals with respect to time. Labels indicating leaky integration indicate the shape of leaky units’ exponential
impulse response, which is more rapidly decaying for the red output unit. b: Timecourses of unit activations without noise. c, d, e: The effect of interconnection
noise in the differentiator mechanism. c: A short delay between the original and delayed signals (k small) amplifies noise in the input signal, leading to wild
fluctuations in the derivative estimate (red), with average behavior near the value of the time derivative of the noiseless input signal, plotted as the black, dashed
horizontal line. d: Longer delays (larger k) lead to a better estimate. e: A functionally useful estimate. Larger k leads to greater smoothing but slower asymptotic
approach to the desired derivative value, illustrating a tradeoff between speed and precision.

by the derivative circuit. Faster approach to the derivative value
can be achieved by reducing the delay of the delayed signal.
However, in this case, noise in the input signal begins to have
a detrimental effect. Supplementary Fig. 1c, d and e show the
effects of a constant level of noise for three different signal de-
lays. A speed-precision tradeoff is therefore evident, but with
enough averaging of the ramp prior to differentiating, any level
of interconnection noise can be handled by some parameteriza-
tion of this circuit with a given delay.

If we additionally assume that the operation of division can
be implemented neurally, then the time remaining until an up-
coming event, or ‘time left’ (cf. Gibbon and Church, 1981), can
be computed by dividing the remaining distance between a re-
sponse threshold z and the current position of a ramp variable

x1(t) by the slope of the timer ramp, A ≈ x3(t):

Time Left(t) =
z − x1(t)

x3(t)
. (5)

Gibbon and Church (1981) showed that rats and pigeons were
able to compute the time remaining before each of two possi-
ble rewards in their time-left task, and to select more frequently
the actions that led to the earlier reward. Since one of the two
reward-delays continuously ran down during the choice proce-
dure, animals needed to be able to compute the quantity in Sup-
plementary Eq. 5. We have shown that this computation can
easily be achieved with a ramping firing-rate model using the
proposed temporal differentiation circuit (although it can also
be achieved by using the inputs to the integrator — the outputs
of the active Clock-Pulse Generator switches in the SRT model
— as an estimate of the ramp slope A).
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The derivative operation we have described can theoreti-
cally be applied to any input signal x1(t). However, in gen-
eral, the output of the circuit will become an increasingly poor
approximation of its derivative as higher frequencies appear in
x1(t), since leaky integration in the delay unit with activation x2
attenuates high frequencies (but see Tripp and Eliasmith, 2010,
for alternative models of neural differentiation). For our pur-
poses, applying a differentiator to a ramp to derive its slope is
both relatively simple, since high frequencies are not present
in gradual ramps, and important for tuning the properties of a
neural integrator, as we now demonstrate.

1.2. Feedback control for achieving nearly perfect integration
A critical aspect of neural models that implement computa-

tions such as integration by precisely tuning parameters is that
mistuned parameter values will destroy their operation (Seung
et al., 2000). Models that involve a ‘line attractor’ for memo-
rizing an analog quantity over a delay period, for example (e.g.,
Machens et al., 2005), require exquisite precision in the shape
of the output functions of the units that produce the attractor.

Here, line attractors are not used, but as in the autapse model
of Seung et al. (2000), precise balance must be achieved in the
integrator unit between leak and positive feedback (cf. the sim-
ilarly precise balance between leak and lateral inhibition that
must be achieved in the neural drift-diffusion implementation
of Bogacz et al., 2006). A simple and effective method for
precise tuning in the current case — i.e., the case in which a
constant signal is being integrated — is to use feedback control
of the relevant parameters based on deviations from linearity in
the resulting ramp.

dw
dt

= −q ·
d2x1(t)

dt2 . (6)

Supplementary Eq. 6 states that if the second derivative with
respect to time of the ramping activation in the SRT timer is
greater than zero, then the activation is accelerating and self-
excitation is too strong. In this case, the recurrent, excitatory
weight of the ramp unit is weakened in proportion to the ramp’s
second derivative (or in proportion to a leaky integral of this
value). If the second derivative is negative, the excitatory weight
is strengthened in proportion to the absolute value of the sec-
ond derivative. With a high enough proportionality constant, or
gain, this linear feedback control law is guaranteed to keep the
self-excitatory weight close enough to zero to ensure approxi-
mately linear ramps (the weight is subject to a steady-state error
that is small when the gain is large, although a very large gain
can lead to instability; Franklin et al., 1994). The key to this ap-
proach is the ability to differentiate with respect to time, which
we can accomplish using the differentiator mechanism previ-
ously discussed.

It should be noted that the derivative circuit in Supplemen-
tary Fig. 1 itself requires precise tuning of three weights that all
depend on the value k. However, whether the estimated deriva-
tive is positive or negative is all that matters for the feedback
control law in Supplementary Eq. 6; the self-exciting, recur-
rent weight equal to (k − 1)/k on unit 2 merely determines the
amount of delay that the circuit imposes on signals and does not

affect the sign of the circuit’s output. Thus the only truly crit-
ical requirement for ramp-tuning is that the two weights from
units 1 and 2 to unit 3 in Supplementary Fig. 1 are of approxi-
mately equal magnitudes and opposite sign, a condition which
we assume can be achieved by any of a number of simple mech-
anisms (e.g., synaptic weight normalization, or other forms of
feedback control).

2. Simplified equation for population activity

We now derive the simplified stochastic differential equa-
tion for neural population activity on which the SRT model is
based from the type of two-equation systems found in, e.g.,
Hopfield and Tank (1985). Such two-equation systems make
it possible to model sigmoidal squashing in the most plausi-
ble manner. Specifically, activations are based on a sigmoidally
squashed sum of weighted inputs that include additive, Gaus-
sian, interconnection noise. In contrast, Eq. 6 in Methods ap-
plies sigmoidal squashing only to the noiseless component of
the inputs. The model of Hopfield and Tank (1985), represented
by the deterministic component of Eq. 8 and Eq. 9, contains an
equation for leaky integration of weighted sums of input from
other units (Eq. 8) followed by amplification with saturating
upper and lower bounds (Eq. 9). We add white noise to the in-
put computation to represent the effect of Poisson shot noise,
transmitted through stochastic synapses:

Ii =

n∑
j=1

wi j f j(x j) (7)

τ · dxi =

[
−xi + Ii +

√
Ii ·

dBi

dt

]
dt

= (−xi + Ii) dt +
√

Ii · dBi (8)

Vi(t) = fi(xi(t)) =
1

1 + exp(−λ · (xi − β))
. (9)

For simplicity here, we assume that the balance between excita-
tion and inhibition, represented in the main text by γ, is folded
into the weights wi j.

In general, we will not require the connection strengths, wi j

between any two units, i and j, to be equal. However, it will
simplify matters to assume that all units have the same activa-
tion functions, fi ≡ f . Assuming that amplification of inputs by
all units is instantaneous, we can replace f (x j) with V j. Using
Ito’s Lemma (i.e., the chain rule, for stochastic systems), we
then arrive at a single equation for the system, Eq. 10:

τ · dVi =
d f
dxi
·

− f −1(Vi) +

n∑
j=1

wi jV j

 dt + . . .

1
2

d2 f
dx2

i

· Ii dt +
d f
dxi
·
√

Ii dBi. (10)

The second term of Eq. 10 is 0 at the inflection point (xi =

β) of the sigmoid function f , since the second derivative is 0
there, and is nearly 0 in a range around the inflection point.
Examining the first term of Eq. 10, we see that as f −1(V) = x
approaches I for some constant input I, V must approach f (I).
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Furthermore, when x is in the linear range of f , d f /dx ≈ λ/4,
and f (x) ≈ (λ/4)·x+(2−λβ)/4. Thus f −1(V) ≈ (4V−2+λβ)/λ.
We therefore get the following deterministic equation:

τ · dVi ≈
λ

4
·

(
−

4
λ

Vi +
2
λ
− β + I

)
dt

≈

(
−Vi +

λ

4
I +

2 − λβ
4

)
dt

≈ (−Vi + f (I)) dt (11)

In Eq. 11, we have returned the nonlinear term f after inverting
its linearization, so it is not obvious that this system closely ap-
proximates Eq. 4 in the main article, in Materials and Methods.
However, it is only when V approaches 1 or 0 that nonlinearities
affect the approximation, and they will have a small effect, as
numerical simulations confirm. Thus we can use the following
more manageable equation in our simulations and analyses:

τ·dVi =

−Vi + f

 n∑
j=1

wi jV j


 dt+

d f
dx
·

√√ n∑
j=1

wi jV j dBi.(12)

If we assume that λ = 4, we get the following simpler equa-
tion (equivalent to Eq. 4 in the main article), on which the SRT
model is based:

τ · dVi =

−Vi + f

 n∑
j=1

wi jV j


 dt +

√√ n∑
j=1

wi jV j dBi.(13)

(If λ , 4, other parameters can be adjusted to obtain the same
result.)

3. Negligible effects of a lower bound on activation on the
first-passage time distribution

One gap in our neural network approximation of a drift-
diffusion process derives from the assumption that the integra-
tor unit applies a hard lower bound of 0 to its activation. The
inverse Gaussian distribution generated by an equivalent drift-
diffusion process with only one absorbing boundary assumes
no such lower bound, so that the process can dip arbitrarily far
below 0. It is therefore important to verify that applying a lower
bound does not make the inverse Gaussian a poor approxima-
tion to the first-passage time distribution of the bounded inte-
grator. Supplementary Fig. 2 shows a simulation of a bounded,
noisy integrator that justifies use of the inverse Gaussian as long
as the constant noise coefficient c is not too large relative to the
threshold/drift ratio z/A. Formally, this model is as follows:

dx = A · dt + c · dB. (14)

4. Scalar invariance is robust to variations in the function
relating firing-rate mean to firing-rate variance

In this section, we examine alternative models of the func-
tional relationship between firing rates and noise, since the Pois-
son shot noise assumption made in the main text, although plau-
sible, is possibly too restrictive. It implies, for example, a Fano
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Figure 2: Neural network units with sigmoid nonlinearities cannot take on
negative activation values, but the inverse Gaussian distribution arises for
drift-diffusion processes whose sample paths can be negative, with arbitrarily
large absolute values. Drift-diffusion simulations shown in the bottom panel
(c = 0.25, z = 1, A = 0.5), in contrast, have a reflecting boundary at 0, and are a
better representation of a noisy sigmoid unit’s activation. The inverse Gaussian
density (red curve in top panel) is approximated quite well by first-passage time
histogram as long as noise is sufficiently small relative to the threshold/drift ra-
tio. When noise is larger, the approximation gets worse, but in such cases, the
distribution is in any case too strongly skewed to account for typical behavioral
data in timing.

factor that is exactly equal to 1 (i.e., the firing-rate variance
should equal the firing-rate mean), but this condition is often vi-
olated in electrophysiological data (cf. Churchland et al., 2010).
Nevertheless, if neural resources are allocated within the SRT
model so as to minimize response time variance, then approxi-
mate scalar invariance still holds over a large range of interval
durations. To prove this, we first review how scalar invariance
arises in a simplified version of our model that assumes deter-
ministic ramping. Approximating this deterministic ramping
condition by averaging over many units allows the SRT model
to preserve approximate scalar invariance over a range of noise
assumptions. Finally, we formally define the neuronal comput-
ing elements of the SRT model and derive an analytical approx-
imation of its response time (RT) variance. This expression will
be used in the Results to determine the variance-minimizing al-
location of elements to each layer of the model.

4.1. Noise model spectrum

The basic model is defined by Supplementary Eq. 14. On
each trial, the process x(t) starts with x(0) = 0, and continues
until first-passage through an absorbing boundary at x = z. The
drift is A.

The following assumptions define a spectrum of possibil-
ities regarding the functional relationship between noise and
mean firing rate that encompass the range of what seems plau-
sible. At the lower end of the spectrum (assumption 1 below),
noise is constant, and has no relationship with firing rates. At
the upper end (assumption 3 below), the variance of firing rates
grows as the square of the mean. Assumption 3 seems quite
implausible since observed Fano factors in cortical neurons are
rarely much greater than 2 (cf. Churchland et al., 2010), but it
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provides a convenient upper bound for our analysis. The com-
petitive Poisson and SRT models of the main text fall exactly in
the middle of this spectrum.

Assumption 1: The noise coefficient is constant: c = k.
This leads to CVs that grow as the timed duration T grows.

Assumption 2: The noise coefficient scales linearly with
the square root of the drift: c = k ·

√
A. This leads to scalar

invariance — i.e., a constant coefficient of variation (CV) of
response times (RTs) — across all timed durations.

Assumption 3: The noise coefficient scales linearly with
the drift: c = k · A. This leads to CVs that decrease with in-
creasing duration.

While the skewness-to-CV ratio is predicted to be constant
and equal to 3 (see main text, section 3.1), regardless of the
timed interval duration, the CV and skewness are individually
constant only under assumption 2. As shown in the main text,
section 3.1, the CV for the drift-diffusion model is as follows:

CV =
c
√

Az
. (15)

In general, if we substitute c = kAr, we get the following:

CV =
kAr

√
Az

= kAr−1/2z−1/2. (16)

This CV function is plotted for different values of r, with k =

0.3 and z = 5, in Supplementary Fig. 3.
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Figure 3: Coefficient of variation (CV) in response times for alternative noise
models (0 ≤ r ≤ 1), as a function of the timed interval duration.

To implement assumption 1 (corresponding to r = 0), we
substitute the constant k for c:

CV1 =
k
√

Az
=

k
z
·

√
z
A

=
k
z

√
E(T ). (17)

For this model, the CV grows with the square root of the dura-
tion, in violation of scalar invariance.

As shown in the main text, under assumption 2 (r = 0.5),
the CV is independent of A:

CV2 =
k
√

z
. (18)

For this model, as we have shown, setting z to be fixed at its
maximum allowable value for all interval durations minimizes
the CV and results in scalar invariance.

To implement assumption 3 (r = 1), we set c equal to kA:

CV3 =
kA
√

Az
= k

√
A
z

=
k

√
E(T )

. (19)

Thus the CV of this model decreases with increasing duration
T (it is still the case that E(t) = T ). This decreasing CV result
holds whether or not we assume that z is constant. Since it is so
far from what is observed experimentally, we consider only the
range of r < 0.5.

Values of r that are far from 0.5 seem quite implausible with
respect to physiological and behavioral data. For r values less
than 0.5, however, an optimization argument shows that mini-
mizing the CV by allocating more neural resources to the ramp-
ing mechanism of the model leads to approximate scalar invari-
ance over a large range of interval durations. This allocation
process effectively makes the model approximate a model with
a deterministic, linear ramp up to a threshold that is normally
distributed across trials. We show this specifically for the most
extreme case of r = 0. For r values slightly greater than 0.5, the
CV can be minimized for very short intervals by again averag-
ing out the noise in the ramping process, but we do not further
consider the case of r � 0.5.

4.2. The deterministic ramp model

An abstract model that can serve as a bridge between theo-
ries of decision making and timing is the model of Grice (1968).
In this model of stimulus categorization, a fixed-intensity per-
ceptual input drives an integrator to ramp linearly and determin-
istically toward a normally distributed response threshold. The
stimulus intensity determines the slope of the ramp and thus the
duration of the process — the RT — while variability in the
threshold produces variance in the RTs.

Supplementary Fig. 4 shows how this model can be used to
time two different durations, by ramping at rates inversely pro-
portional to the durations to be timed. We refer to Grice’s model
as the ‘deterministic ramp model’ when we apply it in this way
to interval timing. The deterministic ramp model is essentially
a continuous-time version of classic, digital counting models of
timing, in which the integration of a constant stimulus replaces
the counting of periodic or Poisson clock pulses. That the de-
terministic ramp model predicts scalar invariance can be seen
by reflecting the threshold distribution across the ramp used for
a particular duration onto the time axis. The standard devia-
tion of each RT distribution is equal to the standard deviation
of the threshold value divided by the ramp slope, and thereby
increases linearly with duration. Furthermore, when the time
axis is divided by the duration of the timed interval, the RT
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distributions for long and short intervals superimpose on each
other, since they are both Gaussian.

We show that CV minimization produces a mix of integra-
tor and trigger units in the SRT model that is sufficient to reduce
noise in the integration process (approximating a deterministic
ramp), while retaining substantial variability in the trigger pro-
cess. Furthermore, threshold variability (i.e., variability in the
level to which ramps rise by the time of a response) exhibits
a normal distribution as an emergent property of this system.
Thus, in the limit of large numbers of units, the SRT model ap-
proximates the simpler deterministic ramp model, reproducing
scalar invariance, whether or not r is exactly 0.5.

Threshold
distribution

Short 
interval 
ramp

Response time
0

Long interval
ramp

Standard
deviation

Std dev Std dev

Figure 4: A noiseless ramp with a normally distributed threshold — namely,
the decision making model of Grice (1968), which we refer to as the ‘deter-
ministic ramp’ model when applied to interval timing. Scalar invariance results
automatically from this model, since RT standard deviation equals the threshold
standard deviation divided by the ramp slope.

4.3. Threshold statistics

To determine the value of an effective threshold, we simu-
lated the SRT model with r = 0 many times, taking the time
T̂ of behavioral response to be equal to the time at which the
trigger unit exceeds an activation value of 0.6 (near this level,
bistable units experience their maximal rates of activation change
and thus function best as response triggers). We then took
the value of the threshold on each trial to be the value of the
ramp unit’s activation at T̂ . Gaussian, analytical approxima-
tions of threshold distributions exist for the deterministic ramp
case (e.g., Lim and Rinzel, 2009), and simulated spiking models
of decision making circuits also produce approximately normal
thresholds (Lo and Wang, 2006). Supplementary Fig. 5a shows
that this pattern of approximately normally distributed thresh-
olds is preserved in our model (it is seen in all our simulations).
Thus the normally distributed thresholds assumed in many tim-
ing models (e.g., Gibbon, 1992) appear to arise naturally from
the dynamics of a nonlinear readout/comparison process in both
simplified and more biophysically detailed neural models.

We now note an important limitation of the trigger mech-
anism. Supplementary Fig. 5b shows that thresholds are only
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Figure 5: A: A typical threshold distribution across 1500 timing trials for the
SRT model with r = 0, showing the approximate normality seen in simulations
across a wide range of parameters (here the drift-diffusion process used c =

0.05 and A = 0.6, and trigger unit parameters in Supplementary Eq. 14, were
c = 0.05, α = 4, β = 1.3,wii = 2, τ = 1). The best-fitting normal distribution
has mean 0.75 and standard deviation 0.075, implying a CV of 0.075/0.75 = 0.1.
B: Average threshold value across 100 trials for different ramp rates, plotted
vs. the corresponding RT. Note that this threshold value is mostly constant but
increases abruptly at very small RTs, where the separation of ramp and trigger
time scales breaks down (see text).

approximately constant across conditions: as the timed dura-
tion grows short, the threshold increases. With very high ramp
rates, the speed of the trigger mechanism can no longer be con-
sidered effectively infinite relative to ramp speed, and the ramp
reaches a much higher level by the time a response is generated.
Even with sigmoidal squashing of ramp activation, this implies
a lower limit on the durations that can be encoded and estimated
by this mechanism — a duration range (e.g., 0—500 msec) in
which a timing mechanism based more heavily on inter-spike
intervals by individual neurons seems likely to take over (e.g.,
Haß et al., 2008).

4.4. Response time density for the drift-diffusion model with a
single, stochastic threshold

For the drift-diffusion process defined by Supplementary
Eq. 14, with x(t) (0 ≤ t < ∞) with a single, deterministic thresh-
old or absorbing boundary z > 0, drift A > 0, noise c > 0 and
starting point x(0) = 0, the probability distribution of the ‘first-
passage time’ at which x(t) first becomes larger than z is the
Wald or inverse Gaussian distribution (Luce, 1986). The Wald
density (Wald, 1947), plotted in Fig. 3 of the main article, is
typically specified as follows, with µ = z/A, and γ = (z/c)2:

p(t, µ, γ) =

√
γ

2πt3 · exp
(
−γ · (t − µ)2

2µ2t

)
. (20)

The expected first-passage time is µ, and the variance is µ3/γ
(Luce, 1986).

When the assumption of a normally distributed threshold is
added to the model just described, the resulting first-passage
density arises from convolving the threshold distribution with
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Supplementary Eq. 20, replacing z in Supplementary Eq. 20
with the normally distributed random threshold value ζ, whose
mean and standard deviation we label z and σz:

p(t, A, c, z, σz) = . . .∫ ∞

−∞


√

(ζ/c)2

2πt3 · exp
(
−(ζ/c)2 · (t − ζ/A)2

2(ζ/A)2t

)
× . . .√

1
2πσ2

z
· exp

(
−

(ζ − z)2

2σ2
z

) dζ. (21)

The effect of this convolution is to smear out the Wald distribu-
tion further as σz grows larger (see Fig. 3 of the main article).
However, the expected first-passage time for both models (Sup-
plementary Eqs. 20 and 21) is the same (E[t] = z/A) for equal
values of A, c, x(0) and z, since convolution with a Gaussian
redistributes probability mass symmetrically on either side of
the Wald’s mean (which we confirmed with numerical simula-
tions).

The expected first-passage time of the stochastic threshold
model, conditioned on a particular threshold ζ, is just µ (Luce,
1986):

E[t|ζ] = ζ/A. (22)

By the law of total expectation, E[t] = E[ E[t|ζ] ] = z/A. Thus
the average RT of a drift-diffusion process with a normally dis-
tributed threshold will be the same as we would get with a sin-
gle, deterministic threshold: the average threshold divided by
the drift.

The variance of the inverse Gaussian is µ3/γ (Luce, 1986),
or in terms of ζ, c and A:

Var(t|ζ) =
c2ζ

A3 . (23)

The variance of the model’s RT distribution can now be deter-
mined from the law of total variance by substituting E[t|ζ] and
Var(t|ζ) into the total variance formula (Rice, 1995):

Var(t) = E[Var(t|ζ)] + Var[E(t|ζ)]. (24)

First we derive E[Var(t|ζ)]. Since Var(t|ζ) is just propor-
tional to ζ by Supplementary Eq. 23, we get:

E[Var(t|ζ)] =
c2

A3 E(ζ) =
c2z
A3 . (25)

Next we derive Var[E(t|ζ)], assuming that the standard devia-
tion of the threshold distribution is some real multiple K of the
ramp noise coefficient:

Var[E(t|ζ)] = Var
(
ζ

A

)
=

1
A2 Var(ζ) =

1
A2 K2c2. (26)

SRT simulations with r = 0 suggest that, consistent with Sup-
plementary Eq. 26, threshold variance Var(ζ) does indeed grow
approximately linearly with the square of the noise coefficient.
In our simulations, we always obtained a value of K on the or-
der of 0.1 · z, although the specific value appears to depend on
the number of units in the model, the amount of noise at each

connection, and the self-excitation strength of the trigger layer.
We thus define α = K/z.

Putting these results together yields:

Var(t) =
c2z
A3 +

(
αcz
A

)2
, (27)

where the first term represents the contribution of the ramp to
the variance, and the second, the contribution of the trigger
mechanism.

For all values of r between 0 and 1, averaging across uncor-
related noise sources reduces the value of k and thereby reduces
Var(t). Since A and z are free parameters aside from the require-
ment that z/A = T , we consider what values these should take
on to minimize Var(t). For Supplementary Eq. 27, maximiz-
ing both A and z is the best way to reduce variability for long
intervals, given the A3 in the denominator of the first term con-
tributed by the ramp.

4.5. Approximating scalar invariance by constrained variance
minimization

We now investigate the effect of plausible noise-reduction
methods. To reduce noise, we exploit the weighted sum oper-
ation that each unit applies to its inputs in order to compute
averages across N redundant ramp and M redundant trigger
units (cf. Shadlen and Newsome, 1998). Minimizing RT vari-
ance with this technique reduces to solving a resource alloca-
tion problem, for which the optimal solution reduces noise in
the ramp but leaves trigger noise mostly unchanged.

For ease of analysis, we assume that the white noise added
at the connection between any pair of units in Supplementary
Fig. 7a has zero cross-correlation (each synapse acts as an inde-
pendent source of white noise). However, despite this assump-
tion, recurrent connections among the trigger units act to cor-
relate their responses to this independent interconnection noise.
This leads to inputs from other trigger units that include rel-
atively strongly correlated stochastic components — compo-
nents for which averaging is not as effective a remedy. (As-
suming independent interconnection noise simplifies our pre-
sentation, but a small amount of interconnection correlation
does not drastically change the model’s properties — indeed,
simulations suggest that small, positive noise correlations act
primarily to increase the effective noise coefficient at each con-
nection, thereby increasing the incentive to allocate units for
averaging out the remaining, uncorrelated components of the
noise.)

The expression for the SRT model’s RT variance (Supple-
mentary Eq. 27) shows that increasing the drift A will diminish
the variance, all other parameters being held constant. Further-
more, when A becomes very large, A3 in the denominator of
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Figure 7: a: Basic interval timing network, showing typical interconnection and recurrent connection strengths (for α = 4 in Eq. 5, main text). b: Example of a
network that implements variance reduction. The simple timing circuit in A is re-implemented by N redundant ramp units and M redundant trigger units. RT is
defined as the first time at which average trigger unit activation exceeds an arbitrary value between roughly 0.5 and 0.8, and the threshold value is defined as the
average ramp unit activation level at the time of this event (individual trigger units are leaky integrators, while the trigger population as a whole is bistable; when
trigger units’ recurrent connection strengths are not reduced in proportion to M, then bistability in individual units makes noise reduction even more difficult). c-f:
Statistics of the threshold implementation as a function of trigger population size M, with deterministic ramping (N = ∞), and noisy interconnections within the
trigger population (c = 1, α = 4, β = 1.3,wii = 2/M, τ = 1, I = 0.05 in Eq. 5, main text). c: The value of the threshold for this particular simulation increased
asymptotically toward a constant and became less variable as the number of units M increased (error bars indicate s.e.m.). d: The variance of the threshold
distribution (the distribution of final ramp values) dropped in proportion to 1/M. e: When this threshold distribution is applied to a noiseless ramp, it results in a
coefficient of variation (CV) equal to standard deviation/threshold, giving rise to a psychologically plausible range of CVs (0.08–0.3). f: The RT distribution is
relatively constant in location and dispersion, except for small M; error bars indicate RT s.e.m.

the first term of Supplementary Eq. 27 makes this term negli-
gible for large A. This leaves a variance approximately propor-
tional to 1/A2, hence standard deviation proportional to 1/A.
In fact, we get scalar invariance as long as the threshold z is
held constant for all different interval lengths, and A is reduced
for longer intervals, since interval duration in that case is also
inversely proportional to A. However, for long intervals (and
small values of A), the first term will dominate the variance
formula, and the first-passage time distribution will take on a
greater skew. Scalar invariance will then be violated, since the
CV will begin to grow as the square root of the mean interval
duration rather than remaining constant. This implies an up-
per limit on the durations that can be timed with proportional
precision.

Supplementary Eq. 27 does not rule out encoding durations
by threshold adaptation, or by simultaneous drift and threshold
adaptation, since both of these approaches can lead to accu-
rate mean duration estimates. However, since A represents the
rate of increase of a physical quantity, it is intrinsically bounded
and has a maximum value at which approximate linearity holds.
More importantly, the A3 term in Supplementary Eq. 27 makes
it far easier to reduce variance by increasing A than by decreas-
ing z. Since we want to maximize A, and since z must always
equal A times duration, the best strategy is therefore to hold z
fixed at the maximum value that the ramp can attain in its linear

range, and to adapt drift alone in order to time different inter-
vals.

Assuming that A is maximized and z remains fixed, the best
way to reduce variance further in Supplementary Eq. 27 is to
reduce the noise coefficient c in some way (we assume for sim-
plicity that c is the same for every interconnection in the model,
although it is potentiated by the connection strength wi j; see Eq.
4). The simplest way to do this is by averaging. By increasing
the number of units that perform each task (ramping or trig-
gering) and computing a weighted sum of their activations, the
same ramp and trigger functions can be carried out with the
effective noise coefficient thereby reduced. Specifically, for N
independent drift-diffusion processes, the variance of the aver-
age process X is the following:

Var(X) =
1

N2

N∑
i=1

Var(Xi) =
1
N

Var(Xi). (28)

Simulations over a range of parameters show that the vari-
ance of the threshold distribution implemented by a fully con-
nected, M-unit trigger population, with interconnection strengths
equal to 2/M (as in Supplementary Fig. 7 B), is proportional
to 1/M (see Supplementary Fig. 7d). The average behavior of
such a population of units with equal connection strengths is the
same as that of a single unit with self-excitatory strength k = 2,
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Figure 6: a, b: State space plots of a neural network unit’s rate of activation
change (dV/dt in Eqs. 4-5, Materials and Methods) for units with fixed external
input and balanced (a) or strong (b) excitatory, recurrent connections. Equi-
librium curves are solid; velocities dV/dt are indicated by arrows and shading
(light = positive, dark = negative). c: The catastrophe manifold formed by the
equilibrium curves of Eq. 6, main text, as the self-excitatory, recurrent weight
strength k ranges from 0 to 2; and the corresponding surface formed by approx-
imately normal threshold densities at each value of k. Three network symbols
are also illustrated: an integration symbol corresponding to a recurrent connec-
tion strength tuned to achieve perfect integration (k = 1 for a unit with α = 4
in Eq. 6); a symbol representing the unit’s exponentially decaying impulse re-
sponse in the leaky integration regime (k < 1); and a sigmoidal symbol rep-
resenting recurrent excitation that is strong enough to produce hysteresis and
bistable switching (or ‘latch’) behavior (k > 1). d: A latch based on hysteresis.
Solid curves denote stable attractors. Where a dashed curve is plotted, two pos-
sible attractors exist. States above the dashed curve converge to the upper solid
curve; states below converge to the lower solid curve. This latch can store a 1
(upper gray region) or a 0 (lower gray region) as long as the input is held be-
tween A and B, and will be least susceptible to bit-flipping during a hold period
at the midpoint, (A + B)/2.

which is strongly bistable and hysteretic when λ = 4 in Eq. 4,
main text.

The system now faces a resource allocation problem: Given
R = N + M units to work with, should more units be used to
implement ramps or triggers? In this case, the formula for RT
variance (Supplementary Eq. 27) becomes:

Var(t) =
c2z

N · A3 +
α2c2z2

M · A2 . (29)

Supplementary Eq. 29 allows us to find the value of M that min-
imizes variance for any given interval duration. The solution
Mopt is the following:

Mopt = . . .

−2Rα2z2A ±
√

(2Rα2z2A)2 + 4(z − α2z2A)(R2α2z2A)
2 · (z − α2z2A)

. (30)

Supplementary Fig. 8 shows a representative case of RT
standard deviation plotted as a function of trigger allocation M
for a set of durations. It is clear that for small A, corresponding
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Figure 8: The envelope of optimal trigger allocations (red curve) superimposed
on a sequence of black curves representing the standard deviation of duration
estimates as a function of the number of units out of 1000 allocated to the trig-
ger mechanism (with the remainder allocated to the ramp). Black curves corre-
spond, from bottom to top, to a logarithmically increasing sequence of interval
durations: 7.5, 15, 30, 60, 120 and 240 seconds. Intersections of the red curve
with the black curves indicate the variance minimizing trigger allocations. Al-
locations are based on an available pool of 1,000 units with noise coefficient
c = 1, and threshold-noise potentiation factor K = 0.1 (Supplementary Eq. 26).
The envelope continues leftward as interval duration goes to infinity, with the
optimal allocation to the trigger mechanism equalling 1 at some finite interval.
Furthermore, the range of feasible allocations which produce a standard devia-
tion less than the expected value collapses to 0 at durations greater than or equal
to (z2R)/c2 (where R is the size of the available resource pool). In general, allo-
cating almost all units to the ramp mechanism for all intervals results in nearly
minimal overall RT variance.

to long intervals, the best value for M is small. The optimal trig-
ger allocation Mopt in fact approaches a single unit as interval
duration grows large (longer than 120 seconds). Furthermore,
when interconnection noise is positively correlated (e.g., with
pairwise correlations of 0.1), simulations suggest that Mopt is
even smaller than in the case of independent noise, and that RT
variance rises much more steeply as a function of M.

When sufficiently many units are allocated to the ramp mech-
anism, but the trigger population size remains roughly constant
(as variance minimization requires), the SRT model approxi-
mates the deterministic ramp model with a deterministic ramp.
The model therefore accounts for scalar invariance over a range
of durations whose extent depends on the number of units avail-
able to act as integrators. This range is bounded below by the
tendency of thresholds to blow up as interval durations become
very short. It is bounded above by the tendency of diffusive
noise to grow relative to drift as interval durations grow very
large, resulting in growing CVs. This property is in fact con-
sistent with evidence for non-constant CVs in the literature (cf.
Bizo et al., 2006).

4.6. The effect of correlated noise on RT variance
Correlations among the synaptic noise sources of the SRT

model invalidate the independence assumption on which our
analytical approximation to its RT variance was based. To de-
termine whether the model’s behavior was robust to violations
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of this independence assumption, we explored the effect of cor-
related noise through computer simulations. One independent
source of noise was associated with each interconnection in the
model; then a weighted sum of noise was added to the sig-
nal transmitted through each connection, with a strong weight
on the corresponding noise source, and weaker weights on the
noise sources corresponding to other connections (the correla-
tion weighting matrix consisted of 1s along the diagonal, and
smaller values off the diagonal).

Because the correlation matrix consumed a great deal of
memory, we were limited to simulating populations that were
small relative to the population sizes simulated with indepen-
dent noise. Supplementary Fig. 9 nevertheless shows a clear
and consistent effect of correlations. There, the coefficient of
RT variation is plotted as a function of the proportion of 60 to-
tal units allocated to the trigger layer, for three different interval
durations (drift rates) and three different correlation strengths.

As the noise correlation increased, the CV typically increased
at all trigger allocations while the mean RT remained roughly
constant. Importantly, the CV increased more rapidly for large
trigger allocations. Thus the incentive to minimize variance by
allocating more units to the SRT model’s ramp layer appears
even stronger than when noise is independent.

5. Evidence for abrupt duration learning

In order to assess whether rapidity and abruptness in adjust-
ing to new temporal parameters could be observed in individual,
timed responses under positive reinforcement, we reanalyzed
the data reported by Balci et al. (2008). In one experiment (Ex-
periment 2), four mice (C57BL/6N) were trained to respond at
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Figure 10: Switch latencies observed in three different phases. Each plot shows
the data from an individual subject. The coordinates of the dots indicate the
switch latencies (y-axis) and the corresponding trial number (x-axis). When a
switch was not observed the corresponding trial was not assigned any symbol.
The vertical tick marks located at the bottom of each plot indicate the short
trials. The vertical dashed lines indicate the boundaries between phases, i.e.,
trials at which the new duration pairs were introduced.

one location in anticipation of the reinforcement after a short
interval (in ‘short’ trials) and at another location in anticipation
of the reinforcement after a long interval (in ‘long’ trials). Mice
self-initiated their trials. Short and long trials were presented in
random order. Trial type was not signaled by any discriminative
stimulus and thus the subject could only rely on its estimate of
elapsed time in distributing anticipatory responses across two
response locations.

In this paradigm the subject typically started anticipating
the reinforcement at the short latency location, and when suffi-
cient time elapsed without delivery of reinforcement, switched
to the long-latency hopper (Balci et al., 2008). Mice were pro-
vided with correction trials: that is, if they responded erro-
neously in a trial, that particular trial type was presented repeat-
edly until the mouse emitted the correct response, after which,
trial types were presented in random order. Mice were trained
in three, multiple-session phases. Phase 1 consisted of a 6 s and
18 s pair. Phase 2 involved training with either a 3 s/9 s or a 12
s/36 s pair, and Phase 3 involved the pair not used in Phase 2.
The order of training duration pairs and response locations were
counter-balanced across subjects. Phase 1 training lasted for 19
sessions, Phase 2 training lasted for 10 sessions and Phase 3
training lasted for 21 sessions. This paradigm has been further
used in rats (Ludvig et al., 2008) and humans (Balci et al., 2009)
without correction trials.

In Supplementary Fig. 10, we present trial by trial switch
latencies (observed in long trials) separately for four mice and
for three different phases (delimited by dashed lines; compare
to model performance in Fig. 2 of the main text). This figure

10



suggests that each mouse adjusted relatively abruptly to the new
duration pairs. Specifically, once they exhibited a switch at a
latency in between the two durations of a new pair, their switch
latency was more or less stable (also see Fig. 2 in Balci et al.,
2008).

Abrupt, immediate changes in behavior can be explained by
the learning rules we have presented when they are parameter-
ized to learn durations after a single training exposure (i.e., with
the learning rate set to 1). Gradual changes can be explained by
a smaller learning rate. In contrast, abrupt, but delayed, changes
in behavior after several exposures to a new duration require ad-
ditional machinery to explain. However, a simple elaboration
of these learning rules that could model the data might involve
allocating a completely new timer after several exposures to a
new duration, with the new timer’s learning rate set to 1.

6. Model performance in the Beat-the-Clock task

Supplementary Figs.11 and 12 demonstrate the performance
of the model in the Beat-the-Clock task. The model is parame-
terized to learn from single exposures to new durations, so that
on average, the model’s ramping integral hits the fixed thresh-
old z at the correct time. It responds at a constant proportion of
this time, however, using a response threshold z′ that is lower
than z. We chose this threshold to give response times that were
below the target interval duration by one standard deviation of
the model’s response time distribution, which is close, but not
identical, to the value that maximizes rewards.

Supplementary Fig. 11 shows autocorrelation in the response
times that arises as a result of the learning rules. Supplementary
Fig. 12 shows the trial-by-trial performance of the model.
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participant and the model in the Beat-the-Clock task. The human participant is
the same one whose performance is shown in Fig. 6 of the main text.
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Figure 12: Model performance in the Beat-the-Clock task. All plotting conventions are the same as in Fig. 4 of the main text.
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