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A Model of Interval Timing by Neural Integration
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We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which
a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our
assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be
largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed
behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents,
monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards,
and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported
predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid
(potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule’s predictions regarding learning
speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in
interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both
types of behavior.

Introduction
Diffusion models can approximate neural population activity
whenever the spike trains of individual neurons in a population
are approximately Poisson and independent. Diffusion models—
random walks with infinitesimal time steps— have been used to
account both for interspike times in individual neurons (Gerstein
and Mandelbrot, 1964) and for response times and choice prob-
abilities in psychological research on decision making (Ratcliff
and Rouder, 1998). They have not, however, been widely used to
model interval timing abilities.

Here we show that a specific form of diffusion model arises
from simple assumptions about neural integration, noise, and
cortical wiring; that this model accounts for the full shape of the
time-estimate distribution in classic timing tasks; that it is well
suited to learning new durations instantly; and that behavioral
data from a novel timing task rule out any model unable to learn
new durations from a single exposure. The model posits that
to time an interval, average firing rates in neural integrator
populations ramp up linearly over time in response to stochas-
tic inputs with a constant mean. This mean, which determines

the ramp rate, is tuned so that integrator activity hits a fixed
threshold level at the right time. Thresholds, starting triggers,
and variable spike rates can easily be implemented within the
same, simplified neural modeling framework that produces
neural integrators.

We present the model in terms of a hierarchy of modeling
levels: (1) at the lowest level, the individual neuron is modeled as
a nonhomogeneous Poisson spike generator, with a rate param-
eter determined at each moment by a leaky integral of spikes
previously received from other neurons; (2) at the next level,
populations of these units use balanced excitation and inhibition
to act either as integrators or bistable switches; (3) circuits of
switch and integrator populations implement a timer; and finally,
(4) overall circuit behavior ultimately reduces to a one-
dimensional drift-diffusion approximation with adjustable drift,
a single, constant threshold, and a diffusion coefficient (i.e., noise
level) proportional to the square root of the drift.

The diffusion model at the top of this hierarchy is intimately
related to existing psychological theories of timing, such as scalar
expectancy theory (SET) (Gibbon, 1977) and the behavioral theory
of timing (BeT) (Killeen and Fetterman, 1988). Mathematically, it is
only a slight variation on BeT. However, as we show, this variation
allows the model to be interpreted in terms of spiking neural activity
in a way that is hard to reconcile with BeT. The diffusion model
furthermore produces inverse Gaussian distributions of time esti-
mates that fit a large body of data better than BeT’s predicted gamma
distributions (and far better than normal distributions).

Finally, diffusion models give excellent accounts of decision-
making behavior and can also account for electrophysiological
data in decision-making tasks (Roitman and Shadlen, 2002).
They may therefore serve to unify theories of decision making
and timing in terms of a common process of stochastic neural
integration.
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Materials and Methods
Here we describe and formalize our basic assumptions about processing
in individual neurons (level 1 of the modeling hierarchy) and in cortical
populations (level 2). We couple these assumptions with a simple spike-
counting argument to derive a drift-diffusion model of interval timing—
the “opponent Poisson” diffusion model (Eq. 4)—which occupies the
top level of the hierarchy (level 4). The simplicity of this model facilitates
mathematical analysis, provides an elegant description of the model’s
behavioral predictions, and highlights the relationship of the model to
existing psychological timing models. However, it assumes a number of
computational functions that require justification in terms of neural
mechanisms. These include the basic functions of temporal integration
and switch toggling that are implicit in spike counting.

We therefore justify the spike-counting argument, and the leap from
level 2 to level 4 in the modeling hierarchy, by describing a timing circuit
at an intermediate modeling level (level 3). This timing circuit—the
stochastic ramp and trigger (SRT) model—implements temporal inte-
gration, a mechanistic response threshold, and an adjustable clock speed.
It also accounts for the operations of resetting and learning that are
needed during intertrial intervals between timed stimuli.

We end the Materials and Methods section by deriving learning rules
that allow the model to learn durations from a single exposure and by
defining a behavioral task called “beat the clock” that tests human learn-
ing speed. In Results, we compare the model’s predictions to data in the
literature and to data from the beat-the-clock experiment.

Overview of the modeling hierarchy: neural processing
assumptions underlying a time-scale-invariant drift-diffusion
model of interval timing
Despite a wealth of behavioral and physiological data in humans and
nonhuman species, there is much disagreement about the neural basis of
timing abilities. Models of timed behaviors abound, ranging from mod-
els of the conditioned eyeblink response (with response times in the
subsecond range) to models of fixed-interval conditioning (with tens of
seconds between peak responding) to models of circadian rhythms.
These models rely on a variety of dynamic phenomena, such as oscilla-
tions (Matell and Meck, 2004; Miall, 1989); ramping quantities, both
linear and logarithmic (Ivry and Richardson, 2002; Dragoi et al., 2003;
Durstewitz, 2003; Reutimann et al., 2004; Shea-Brown et al., 2006; Wack-
ermann and Ehm, 2006); synfire chains (Haß et al., 2008); weighted sums
of basis functions (Grossberg and Schmajuk, 1989; Machado, 1997; Lud-
vig et al., 2008); and repeatable stochastic processes (Karmarkar and
Buonomano, 2007; Ahrens and Sahani, 2008). For durations in the sec-
onds to minutes range, however, data have not clearly favored any par-
ticular model.

What is arguably the simplest approach— counting up the ticks of a
noisy clock (Treisman, 1963)—works well in accounting for behavioral
data, and as we show, it can also account qualitatively for physiological
data. Linear accumulation that arises specifically by counting the ticks of
a noisy pacemaker is a basic feature of BeT (Killeen and Fetterman, 1988),
and it is also consistent with SET (Gibbon, 1992). SET identifies time
scale invariance (or “scalar invariance” as it is called in SET) as the pri-
mary behavioral phenomenon to be explained—a phenomenon in which
response time distributions are approximately Gaussian, with a mean
equal to the timed duration, and an SD in constant proportion to the
mean such that rescaling the time axis causes response time distributions
for different intervals to superimpose. Although normality is often vio-
lated in empirical response time data, rescaling the time axis does typi-
cally cause response time distributions for different intervals to
superimpose (e.g., Buhusi et al., 2009).

Under the assumption of a single Poisson process for a clock signal, the
number of ticks counted by a given time has a Poisson distribution, and
the time of first passage of this summed value above a fixed threshold has
a gamma distribution that approximates a Gaussian when the threshold
is large (Gibbon, 1992). Different durations can be accurately timed by
changing either the threshold (as in process model implementations of
SET) or the tick rate (as in BeT) (Killeen and Fetterman, 1988). As the
timed durations grow, however, the threshold-adjustment approach re-
duces the coefficient of variation (CV) of first-passage times (i.e., the SD

of these times divided by their mean); in SET, scale invariance and ap-
proximately Gaussian response time distributions arise instead from
noise in a memory comparison process (Gibbon, 1992). BeT, in contrast,
produces scale-invariant gamma distributions using a fixed threshold,
but as we demonstrate later, the tick rate must be exceedingly slow to
account for typical behavioral CVs in the range of, e.g., 0.1 to 0.3.

The proliferation of alternatives to this type of tick-counting model
derives in part from difficulties in envisioning a neural implementation
of simple linear accumulation (cf. Church and Broadbent, 1992). In
process implementations of SET, linear accumulation is often described
in abstract computational terms of buffer storage and logical/arithmetic
operations (Gallistel and Gibbon, 2000; Gibbon et al., 1984), and in BeT,
ticks are equivalent to state transitions in a sequence of abstract behav-
ioral states.

We propose a ramping firing rate model that addresses these difficul-
ties while preserving dependence on the linear accumulation of Poisson
inputs over time. This model depends on a number of assumptions about
neural processing, most of which have been used by other modelers in
various combinations. These assumptions, and the ways in which they
determine how a given modeling level emerges from the level below, are
as follows.

(1) Neurons (model level 1) (Fig. 1a) can represent slowly varying
quantities with a nonhomogenous Poisson firing rate code (cf. Shadlen
and Newsome, 1998). This Poisson process’s rate parameter !(t) is
equivalent to a shot-noise/leaky integrator/Ornstein–Uhlenbeck process
with sigmoidal squashing ( f ), applied to a weighted sum of input spikes
from other units I(t). The sequence of input spikes at times si is essentially
a sequence of brief rectangular pulses, each of area 1, but is technically a
sum of Dirac-delta functions [i.e., "(t ! si) " 0 for t # si,, and "(0) equals
the limit of a sequence of rectangular pulses of area 1 as the base of the
rectangles shrinks to 0; thus, $x(t)"(t ! s)dt " x(s) for all continuous
functions x(t)]. The spike-time sequence si is also assumed to be Poisson.

(2) Population activity (model level 2) (Fig. 1b) can be reduced (by the
assumption of independence) to a single population firing rate variable
[V(t)], which is also a shot-noise process. Self-excitation (k) determines
the time constant of leaky integration in this shot-noise process. Longer
time constants (corresponding to slower leak) and even perfect integra-
tion (zero leak) can be achieved via recurrent excitation of a population
by itself. However, the tuning of this recurrent excitation must be ex-
tremely precise to achieve perfect integration and to avoid instability (cf.
Seung et al., 2000). Connection strengths wij between the model’s popu-
lation units determine the magnitude of each spike in a Poisson spike
train of rate Vj being sent from the jth population to the ith population.

(3) Feedback control mechanisms can achieve the necessary level of
tuning precision. We propose one such mechanism in the supplemental
material (available at www.jneurosci.org) based on computing temporal
derivatives in a neurally plausible way, but other approaches also exist
(e.g., Koulakov et al., 2002; Goldman et al., 2003; Goldman, 2009).

(4) To the extent that a population’s inputs are not independent spike
trains, the inputs can be decorrelated by a proportional level of inhibi-
tion: coincident spikes in a densely connected population can trigger
compensating, inhibitory spikes that cancel the coincident excitation (cf.
van Vreeswijk and Sompolinsky, 1996; Shadlen and Newsome, 1998;
Renart et al., 2010). Without such a mechanism for decorrelation, strong
correlations between the firing rates of different neurons in A would tend
to destroy the ability of population B to act as a temporal integrator of a
rate code, producing spreading synchronization of firing and subsequent
resetting of individual neuronal membrane potentials that would wipe
out the temporal integral of their inputs. For simplicity, we therefore
assume that any excitatory drive I is balanced by an inhibitory drive #I,
with # a constant with a value %1.

(5) Uncorrelated excitatory and inhibitory spikes drive an integrator
population (model level 3) (Fig. 1c) to compute a running difference of
the two spike counts to time intervals. At any point in time, this differ-
ence has a Skellam (1946) distribution, which quickly converges to a
normal distribution as spikes accumulate (and which equals the Poisson
distribution for # " 0). We refer to such a spike-counting and differenc-
ing process as an “opponent Poisson process.”
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Figure 1. a, Individual neurons modeled as nonhomogenous Poisson spike generators with rate!(t). Right, Simulated response !(t) to input I(t) over time. b, Subpopulations of inhibitory (red circle) and
excitatory (green circle) neurons, with population firing rates equal to the sum of individual unit rates. Excitatory connections of weight w in the system also excite inhibitory interneurons to produce inhibition
with a weight of #w. Self-excitation (k & Wii) determines the time constant of leaky integration. Simulated response of a self-exciting, shot-noise process to a weakly weighted, high-rate spike train input is
shown at right for k"1/(1!#)"2 (corresponding to perfect integration for#"0.5) and k%1/(1!#)"1.5 (corresponding to leaky integration). c, The SRT model. Balanced self-excitation [k"1/(1!
#)] produces an integrator (ramp), which accumulates clock pulses. Strong self-excitation [k ' 1/(1 ! #)] produces bistable switches, whose activation functions f#, k are defined by a slice of the colored
“catastrophe manifold” on the left. Switches initiate the timer circuit (start); produce stable, adjustable firing rates/clock speeds (clock-pulse generator); and produce a punctate behavioral response, or decision
threshold (trigger). Duration is encoded by the proportion S of active start-to-clock weights (red arrows). On the right, time courses show start, ramp, and trigger activations during a timed interval. d, Opponent
Poisson diffusion model. Simulations (red, green, blue, and magenta traces) are shown for 1000 trials each with threshold z at 300 and drifts A of z/2, z/8, z/32, z/64, and z/128, respectively (m "(3 ; #"
0.5;)t"0.01s).Correspondingresponsetimedistributionsareshownabove,asblueresponsetimehistograms(20binseach)fitbyscaledinverseGaussians(redcurves).Distributionsarescale invariant(CV*0.1).
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(6) When spike rates are high, the resulting difference of spike counts
is approximated by a drift-diffusion process (cf. Gerstein and Mandel-
brot, 1964), with drift (i.e., average tendency to rise) equal to the differ-
ence between the net excitatory and net inhibitory weighted spike rates
(I ! #I ). This model constitutes level 4 of the modeling hierarchy (Fig.
1d). Such a process is formally defined by the following stochastic differ-
ential equation (SDE), in which x represents the population firing rate of
the integrator, t is time, A represents the net excitatory input, B (for
Brownian motion) represents the white noise approximation to input
variability, and c!t is the SD of x(t), assuming x(0) " 0 (cf. Gardiner,
2004):

dx $ A ! dt % c ! dB. (1)

Equation 1 can be simulated with arbitrary precision (as in Fig. 1d) by
the Euler–Maruyama method (Higham, 2001). This method defines
the following random walk in discrete time, with small time steps of
duration )t and random noise sampled from a standard normal dis-
tribution !(0, 1):

xnew $ xold % A ! )t % c")t ! !+0, 1,. (2)

(In all SDE simulations in the paper, approximation error is held to
negligible levels by setting )t small enough so that at least 200 time steps
are typically simulated for each of the model’s timed responses.) Because
the variance of a difference between independent Poisson spike counts
equals the sum of their variances, each of which is proportional to t, we
take c to equal the square root of summed excitatory and inhibitory
inputs, and we rewrite A as (1 ! #)I:

dx $ +1 & #,I ! dt % "+1 % #,I ! dB. (3)

Other neural models of decision making make similar assumptions (e.g.,
Gold and Shadlen, 2000; Eckhoff et al., 2008). For convenience, we define
a constant of proportionality, m & ((1 - #)/(1 ! #). Substituting m in
Equation 3 gives a particular form of drift-diffusion model—the oppo-
nent Poisson diffusion model—in which m is constant across durations
encoded by different levels of A:

dx $ A ! dt % m"A ! dB. (4)

The dynamical and statistical properties of such models are well under-
stood, and their response time predictions have a simple and exact math-
ematical form as an inverse Gaussian (or Wald) distribution
corresponding to first passages through a single, absorbing boundary, or
threshold, z ' 0 (Luce, 1986). Figure 1d shows simulations of such a
process with noise and threshold set to give a plausible CV for humans of
0.1. [Because these simulation traces only briefly dip below 0, they show
that the absence of a lower bound is unnecessary for producing a close
approximation to an inverse Gaussian response time distribution when
CVs are in a psychologically plausible range. As we demonstrate explicitly
in Section 3 of the supplemental material (available at www.jneuro-
sci.org), including a neurally plausible reflecting boundary at 0 would
have very little impact on the shape of the response time distribution even
for larger CVs.]

(7) Timed responses are emitted when the integral x(t) reaches the
threshold z. In the SRT model (level 3), the crossing of this threshold is
detected by a “trigger” population, whose recurrent excitation is stronger
than that of an integrator population, causing bistability in its firing rates
(cf. Cragg and Temperley, 1955; Wilson and Cowan, 1973). Transition of
the trigger population from a low to high rate triggers a behavioral re-
sponse and rapid resetting of the integrator to 0 (cf. Lo and Wang, 2006).
Optimal time estimation (i.e., unbiased estimation with minimal vari-
ance) requires that we take z to be fixed and deterministic, and integra-
tion to be perfect (see Results).

If our assumptions about the independence of spike trains are violated
(for example, because spike-time correlations cannot be effectively can-
celled), then it is reasonable to assume that the population firing rate
dynamics will be better described by a diffusion process with a larger
diffusion coefficient (more noise per unit firing rate), or an altogether
different functional relationship between firing rates and noise levels. In

the supplemental material (available at www.jneurosci.org), we consider
a spectrum of models with power-law relationships between drift and
noise (with c proportional to Ar in Eq. 1) that bracket the current model:
from a model in which noise does not grow at all as firing rates increase
(r " 0) to a model in which noise grows in direct proportion to summed-
input firing rates (r " 1). With a constant threshold, the CV of the
constant-noise model increases with increasing duration, and that of the
proportional-noise model decreases. In contrast, the CV of the current
model (r " 1/2) (Eq. 4) remains constant. In the constant-noise case, an
optimization argument detailed in the supplemental material (available
at www.jneurosci.org) nevertheless recovers approximate time scale in-
variance over a limited, but potentially large, range of durations. For
greater values of r ranging up to, but not including, the biologically
implausible proportional-noise case (r " 1), approximate time scale in-
variance can similarly be achieved, but at a greater cost in neural re-
sources. Thus the model is robust to variations in some of its structural
assumptions.

Model level 2: neural population model
The preceding discussion motivates the use of a diffusion equation in
which the noise coefficient is proportional to the square root of the drift
(Eq. 4). We now complete a simplified description of neural population
dynamics by including leaky integration and saturating nonlinearities
(model level 2). These features take the model a step closer to biophysical
plausibility, and they are critical for the real-time operation and response
triggering of the complete SRT model at level 3. However, the predictions
of the diffusion timing model at level 4 can be understood without ref-
erence to lower modeling levels.

Population firing rates are modeled as outputs Vi(t) of leaky integra-
tors with sigmoidal (specifically, logistic) activation functions applied to
a weighted sum of inputs, I(t)— i.e., a standard, artificial neural network
unit (Cohen and Grossberg, 1983; Hertz et al., 1991; cf. Lapique, 1907).
In addition, to model the shot noise of Poisson spike train inputs in an
analytically tractable form, we assume that Gaussian white noise is added
to the population’s inputs, which requires terms dBi (Smith, 2010):

' ! dVi $ #!Vi % f #$
j

wij+1 & #,Vj%% ! dt

% "$
j

wij+1 % #,Vj ! dBi. (5)

with

f+ y, $
1

1 % exp+!( ! +y & ),,
. (6)

Here, Vi(t) represents the average firing rate of population i; ' is the time
constant; ( determines the slope of the sigmoidal activation function f;
and ) represents the “offset voltage,” the value of the input x such that
f(x) " 0.5. Connection strengths from population j to population i are
denoted by wij. These weight both the activations of afferent units and the
white noise contributed by the connection. For convenience, we define ki

as the recurrent weight from a population to itself: ki & wii. [In supple-
mental material 2 (Simplified Equation; available at www.jneurosci.org),
we show that Equations 5 and 6 approximate a system that more consis-
tently treats sigmoidal squashing of both input activations Vj and inter-
connection noise dBi; similar behavior of this alternative system suggests
that the specific functional form of Equations 5 and 6 is not critical, as
long as the population model is approximately a leaky integrator with
sigmoidal squashing.]

Model level 3: SRT timing model
The neural plausibility of the opponent Poisson diffusion model of in-
terval timing (Eq. 4) depends on whether the following critical assump-
tions hold: (1) spikes can be losslessly added and subtracted over time,
which amounts to perfect temporal integration; (2) spike trains from
different neurons are independent; and (3) fixed, deterministic thresh-
olds can be applied to the accumulating spike count. In this section and in
the supplemental material (available at www.jneurosci.org), we propose
and analyze neural mechanisms that allow us to relax these assumptions

Simen et al. • A Model of Interval Timing by Neural Integration J. Neurosci., June 22, 2011 • 31(25):9238 –9253 • 9241



without losing the explanatory power of timing
by ramping in the opponent Poisson diffusion
model. The complete SRT model also includes
a mechanism for integrator reset at the end of
an interval, so that an account can be given of
the full time course of neural activity both
within and across multiple trials of a timing
task. We show in Figure 2 that the SRT model
explains salient features of electrophysiological
data from rats and monkeys performing timing
tasks.

Ramping in the linear regime. We first ad-
dress assumption 1: perfect temporal integra-
tion by neural populations. This topic has
received a great deal of attention in theoretical
neuroscience, both because of its computa-
tional usefulness [it plays a central role, for ex-
ample, in influential models of decision
making (Shadlen and Newsome, 2001) and eye
movement control (Seung, 1996)] and because
of the difficulty that noisy neural systems os-
tensibly have in implementing temporal inte-
gration. The simplest hypothetical mechanism
for temporal integration in neural systems par-
allels the conventional method for integrating
in analog electronic circuits (Jackson, 1960),
namely, via the cancellation of leak in a leaky
integrator, or capacitor, by precisely tuned
positive feedback (Seung et al., 2000). Given
current knowledge about the time constants
and noise characteristics of neural processing,
the level of synaptic tuning precision required
to cancel leak by this method is thought by
many to be implausible (cf. Wang, 2001; Major
and Tank, 2004).

We nevertheless use this conventional, re-
current feedback approach to temporal inte-
gration, because in the specific case of linearly ramping integrators, the
necessary precision can be achieved by a relatively simple method. This
feedback control method, which corrects for nonzero second derivatives
of a ramp with respect to time, is discussed in the supplemental material
(available at www.jneurosci.org). Other methods for achieving ramping
and temporal integration (e.g., Koulakov et al., 2002; Goldman et al.,
2003; Goldman, 2009) may also be suitable for implementing the linear
firing-rate growth and rapid learning rules (to be discussed shortly) on
which the timing model depends. The current model uses only two con-
nection strength parameters, however, making mathematical analysis of
it particularly straightforward.

Recall that Vi in Equation 5 represents the firing rate of a population,
and Ii " .j # iwijVj represents the weighted sum of excitatory inputs from
other populations, minus interconnection noise. When a recurrent feed-
back connection strength ki " wii is added to Equation 5, the result is the
following:

' ! dVi $ /!Vi % f ++1 & #, !

+kiVi % Ii,,0 dt % c̃dBi. (7)

For convenience, we use c̃ to represent the weighted sum of the noise
terms contributed by inputs and by recurrent excitation.

To simplify the analysis of ramping behavior, and without loss of
generality, we can set the time constant ' to 1, and also ( to 4, so that
f 1()) " 1. The linearization of f around ), call it f̃, is then an affine
function with slope equal to the identity function: f̃( y) " y ! ) - 0.5.
Setting the feedback strength k " 1/(1 ! #) in Equation 7 then cancels the
leak defined by the !Vi term. The result is the following approximation
for Equation 7, in which Ã " (1 ! #) ! Ii ! ) - 0.5:

dVi $ Ã dt % c̃ dBi. (8)

If ) " 0.5, then Ã is identical to A in Equation 4. We will generally
assume, however, that ) is substantially larger than 0.5 in our ramping
units, so that ramp activation will rapidly decay to 0 if the input to an
integrator population suddenly goes silent. Thus, Vi is a perfect integral
of Ã if noise c̃ " 0, as long as Ii remains in the range for which f is
approximately linear.

Noise c̃, of course, cannot be assumed to be 0. In fact, we must assume
under the balanced self-excitation model of integration that the spikes
transmitted from an integrator population to itself should contribute to
the shot noise in its own inputs. The following, modified drift-diffusion
equation approximately implements this assumption; it closely mimics
the behavior of a simulated, nonhomogeneous Poisson firing rate model
that implements our assumptions exactly (Fig. 1b):

dVi $ +1 & #,Ii ! dt % "+1 % #, ! +Ii % kiVi, ! dBi. (9)

Furthermore, since ki " 1/(1 ! #), Equation 9 reduces to the following,
with Ã " (1 ! #)Ii:

dVi $ Ã ! dt % m ! "+Ã % Vi, ! dBi. (10)

Importantly, this alteration of the opponent Poisson timing model (the
inclusion of the Vi term in the noise coefficient of Eqs. 9 and 10) produces
only negligible violations of the predicted properties of the simpler
model (Eq. 4) when the integrator population is large. As the integrator
population size goes to infinity, the contribution of Vi to the noise coef-
ficient goes to 0. This results because both the mean and variance of the
spike count in a homogeneous Poisson process with rate parameter !
over a duration t are equal to !t (Ross, 1998). If we weight each spike in a
spike train by W, the expected sum of spikes over t is W!t. If we then
increase the rate parameter to !1 " !/W (with W % 1), the expected sum
becomes !t once again, but the variance becomes W!t % !t [since for a
random variable X, i.e., the spike count, Var(W ! X ) " W 2Var( X) "

Figure 2. a, Time courses of start, ramp, and trigger unit activations in the SRT model (level 3) when used to time a short
interval. Blue time courses are governed by system dynamics. Red time courses are input signals consisting of a 1 or 0 with
superimposed white noise; inputs shut off when thresholds are crossed in these simulations (but can be parameterized to remain
on even after output-triggering to support learning from errors). Hysteresis in the trigger unit leads to sustained activation
following threshold crossing (the duration of this sustained activation can be parameterized as desired). b, A longer interval, timed
using a lower clock speed (a smaller proportion S of active start-to-clock weights, colored red in Fig. 1c). c, d, Binned spike statistics
of single, sensory thalamus neurons encoding reward delays from Komura et al. (2001), showing initial transients followed by
ramps. Ramp slopes rapidly update within five to seven trials after decreases in reward delay from 1 to 0 s after cue offset (c) and
increases from 1 to 2 s (d) (reprint permission pending).
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W 2!1t " W2(!/W )t " W!t]. Noise reduction can therefore be achieved
in an integrator population by increasing the input spike rate (e.g., by
increasing the integrator population size) and proportionally reducing
each spike’s weight (e.g., by decreasing ki without otherwise changing
Eqs. 9 and 10). In simulations, approximately scale-invariant inverse
Gaussian first-passage time distributions arise for a wide range of param-
eter values (i.e., #; !, the spike rate sent to the integrator; and wij, the
weight applied to these spikes before integration).

Regarding assumption 2, that correlated noise does not invalidate the
model, the supplemental material (available at www.jneurosci.org) de-
tails simulations of a drift-diffusion model of timing with a large number
of moderately correlated units. An argument based on response-time
variance minimization suggests that even when such correlations are
present, approximate time scale invariance can be achieved by averaging
over large populations.

Thresholds: a latching/bistable trigger mechanism. Linear systems are
unsuitable for performing a critical element of decision making. Specif-
ically, they cannot easily be made to binarize their outputs into distinct
categories that can be labeled “0” and “1.” Yet, like the action potential of
the individual neuron, the readout operation that triggers responses in
the SRT model should render a yes/no decision about whether the value
of the ramp activation is greater than a threshold value or not. The model
of a latch in digital electronics offers exactly the desired properties: it
binarizes its input voltage and can store the result indefinitely.

When positive feedback is sufficiently strong [ki ' 1/(1 ! #)] in a
linearized version of our neural population model (Eq. 5), its activation
level Vi becomes an exponentially increasing or decreasing function of
time (depending on input strengths). When the squashing effect of its
nonlinear activation function is taken into account, this means that ac-
tivation is eventually pinned against a ceiling of nearly 1, or a floor of
nearly 0 (Figs. 1c, 2a,b, “trigger” time course). Thus the system is bistable,
with only transient intermediate levels of activation (cf. Cragg and Tem-
perley, 1955; Harth et al., 1970; Wilson and Cowan, 1973). We refer to
such bistable populations as “switches.” Among other roles in the SRT
model, switches implement the decision to respond by effectively apply-
ing a threshold to the ramping time variable in a ramp population. The
“catastrophe manifold” (Jordan and Smith, 1999) in Figure 1c shows
what happens to the sigmoid activation function f#,k of a population as
self-excitation k grows from the leaky range [k % 1/(1 ! #)] to the level of
perfect integration [k " 1/(1 ! #)] and beyond, into the switch range
[k ' 1/(1 ! #)].

With a neurally implemented, bistable decision mechanism, the as-
sumption of a fixed, deterministic threshold across trials may no longer
be tenable. Instead, noisy processing in the trigger population produces
decisions at different levels of ramp activation on different trials (al-
though possibly with a constant mean value across durations). If this
threshold noise is large relative to ramping noise, then the distribution of
threshold values must contribute to the response time predictions. In the
supplemental material (Section 4.4; available at www.jneurosci.org), we
derive a response-time distribution for this more realistic model, which
has approximately normally distributed thresholds across trials (cf. Lo
and Wang, 2006).

The complete SRT timing circuit. We can now assemble a complete
timing circuit based on the neural population model of Equation 5 (Fig.
1c, gray box). A “start” signal, modeled for simplicity as a step function of
time equal to 0 or 1 in Figure 2, a and b, triggers a set of switches whose
summed activations constitute an adjustable clock-pulse generator. This
generator layer drives a ramping unit (“ramp”) parameterized to act as
much like a perfect integrator as possible [k * 1/(1 ! #)]. The strength of
this drive determines the rate at which the ramp unit’s output activation
increases linearly over time (Fig. 2a,b). The ramp unit in turn excites the
trigger [a bistable switch unit with k ' 1/(1 ! #)] through a fixed con-
nection strength. Below a critical level of input (Eq. 5, ) ! 0.5), the ramp
unit decays back to 0, as shown in Figure 2a, around time equal 10 s, and
at 225 s in Figure 2b. This decay is equivalent to the integration of a
strong negative input (with magnitude 0.5 ! ) % 0) until zero activation
is reached.

Similar, nearly linear ramping of firing rates followed by rapid decay
has been observed in the rat sensory thalamus (Komura et al., 2001) as

well as in monkey presupplementary motor cortex (Mita et al., 2009) in
interval timing tasks. Mita et al. (2009) in fact achieved a better fit to
averaged firing rate data with an exponential curve than with a linear
function, but their untransformed data appear reasonably linear. [A
nearly exponential ramp can in any case be achieved by the current model
with imperfect tuning of k ' 1 (Shea-Brown et al., 2006).] A slowly
ramping pattern is similarly observed in the contingent negative varia-
tion in human scalp potentials in timing tasks (Macar and Vidal, 2003).

The data of Komura et al. (2001) furthermore support a theory of
rapid (five to seven trials) duration-learning, as shown in Figure 2, c and
d. There, expected rewards following a cue are unexpectedly delivered
early by 1 s (Fig. 2c) or are delayed by 1 s (Fig. 2d). Brody et al. (2003)
found similarly rapid updating of firing rate ramps in monkey prefrontal
cortical neurons in a vibrotactile frequency discrimination task with pre-
dictable interstimulus intervals. We address the SRT model’s learning
speed in the next section.

Adjustable clock speeds are achieved in the SRT model’s clock-pulse
layer through weights from the start unit to the clock-pulse units (Fig. 1c,
red connections) that are strong enough to cause latching in clock-pulse
layer units; start-to-clock pulse weights of this strength or greater will be
referred to as “active.” The subset of active clock-pulse populations sends
inputs at a fixed rate to the ramp unit to generate a ramping activation of
adjustable slope (and as we show in the next section, two simple learning
rules can adapt the start-to-clock weights so as to encode new durations
after a single trial). A transient burst of firing, like those seen in the rat
data in Figure 2, c and d, at the cue onset, naturally occurs in more
biophysically detailed spiking models of neural populations when a qui-
escent population receives a step voltage input (e.g., Gerstner, 1999). In
contrast, drift-diffusion reductions of spiking models, such as Equation
9, are too simplified to capture this phenomenon.

Before a critical level of ramp activation is reached in the SRT model,
bistability in the trigger unit prevents propagation of this ramping signal
to the rest of a larger neural system in which the timer is assumed to be
embedded. [Evidence for such bistability in membrane potentials exists
for neurons in both the prefrontal cortex and striatum (Onn and Grace,
2000).] After the timed interval has elapsed—a duration that is assumed
to be long relative to the duration of a 0 –1 switch in the trigger unit—the
trigger unit suddenly transitions, thereby approximating the step-
function behavior of a true threshold.

The start signal can itself be implemented by a trigger population
whose function is to detect cues that indicate the onset of an interval. Cue
categorization is a perceptual decision-making process that can be mod-
eled successfully by drift-diffusion models implemented with nearly
identical modeling assumptions (cf. Bogacz et al., 2006). When the out-
put trigger indicates that an interval has elapsed, it inhibits the start
switch and stops the ramping process, which thereafter resets rapidly to 0.
To enable the detection of responding that is too early, the start switch
can also be parameterized to remain on even after the trigger switches on,
and to turn off only when a cue from the environment is received.

This SRT timing scheme can naturally be extended to chains of timers,
with the output trigger of one timing element serving as the start trigger
of the next, or to chains of alternating SRT timers and cue-categorization
processes.

Learning rules for adaptive timing
We show in Results that adapting the rate of spike accumulation and
using a fixed threshold is the optimal time estimation policy for the
opponent Poisson diffusion model (i.e., the policy that sets the model’s
expected first-passage time equal to the timed duration and minimizes
the variance of the first-passage time distribution). We further show that
this model fits behavioral data better than plausible alternatives. We have
not yet specified, however, how this rate adaptation is to occur.

We now describe two simple learning rules that update the weights
between the SRT model’s start switch and its clock pulse generator in
response to error feedback from the environment. Each such weight is
either active, so that the corresponding clock pulse unit transitions to the
“on” state when the start switch activates (in which case we assume for
simplicity that the weight is 1), or it is inactive, so that the corresponding
clock pulse unit remains in the “off” state at all times (in which case we

Simen et al. • A Model of Interval Timing by Neural Integration J. Neurosci., June 22, 2011 • 31(25):9238 –9253 • 9243



assume it is 0). Durations are encoded in the model by the proportion of
active start-to-clock pulse weights (Fig. 1c, number of red weights out of
the total number of start-to-clock pulse weights), which we denote by S.
By the assumption of independent Poisson outputs of the clock pulse
switch units, the total rate of spikes coming from the clock pulse gener-
ator is proportional to S (for simplicity, we assume that the weighted
spike output of the clock pulse generator equals S). As noted previously,
in the SRT timer’s ramp unit, the effective drift, or “clock speed,” Ã
resulting from a given value of S is Ã " S ! ) - 0.5.

With these rules, the model can learn a duration after a single
exposure. The rules can be made less sensitive to individual training
examples by changing weights by only a proportion of what the rules
specify, resulting in asymptotic learning of durations over multiple
trials. In Results, we discuss evidence for human and nonhuman
animal behavior that is consistent with the rapid duration-learning
that these rules predict.

Late-timer update rule. A simple rule for updating the start-to-clock
pulse weights S and clock speed Ã involves detecting when the timer has
failed to cross threshold by the time ( T) at which the target interval
elapses on training trials; we refer to these as “late-timer trials.” Such
trials can be detected by simultaneously detecting activation in the start
switch, the presence of the environmental cue signaling the end of the
interval, and a lack of activation in the trigger. The information used by
the late-timer update rule comprises the fixed threshold value, z, which is
assumed to remain constant across trials, the current ramp level at the
end of the training interval, VT, and the clock speed, Ã.

From these three quantities, a weight increment )S can be computed
instantaneously (Fig. 3a). We denote the active weight proportion S at
the end of trial n as Sn. Interval durations begin at time 0 and end at T. The
weight-change rule is then as follows:

Sn-1 $ Sn % )S

)S $ +Sn & ) % 0.5, !
z & VT

VT
. (11)

Here, ) refers to the midpoint of a ramp unit’s activation function in
Equation 5 (an input stronger than ) ! 0.5 is required to cause ramp-up
in the ramp unit).

The result of this rule (accurate learning in one trial) can be derived by
computing the average first-passage time on trial n - 1, denoted tn - 1,
assuming a late-timer trial on trial n. We denote the true duration in
both trials as T (here, Ãn " Sn ! ) - 0.5 indicates the slope of the ramp
on trial n):

tn-1 $
z

Ãn-1

%
z

Sn-1 & ) % 0.5

$
z

Sn % +Sn & ) % 0.5, !
z & VT

VT
& ) % 0.5

$
VT

Sn & ) % 0.5
$

VT

Ãn

$ T.

(12)

Thus, if the timer’s ramp slope is too shallow on trial n, the slope will
increase so that the ramp hits the threshold at exactly T on trial n - 1.

Early-timer update rule. Another simple rule for updating S and Ã
applies to the case of early threshold crossings. Unlike the case of the late
timer, the model cannot instantly correct timing errors when the ramp
crosses the threshold early. Instead, it must wait for the environmental
cue signaling the end of the interval before it has the information needed
to correct the error. We assume that this signal will always occur at some
point within the current trial—a more complex update rule would be
needed to handle omissions of the end cue. Early-timer trials can be
detected by simultaneously detecting activation in the start switch, the
absence of the environmental cue, and activation in the trigger (the start
switch can be parameterized to remain active even after the trigger acti-
vates if the environmental cue is not present, and to shut off once the cue

arrives). The information used by the early-timer update rule comprises
the fixed threshold z and the current clock speed, Ã.

The early-timer rule adapts the active start-to-clock pulse weight pro-
portion S continuously throughout the interval between the timer’s
elapsing, at time tearly, and the end-cue arrival at time T (Fig. 3a, third
stimulus, during which the weight proportion S is continuously updated
without affecting the timer’s behavior until the next stimulus onset). For
simplicity, we first define an update rule for the ramp slope, Ã, and then
convert it into a weight-change rule for changing S. The update rule for Ã
is the following differential equation, which specifies that Ã decreases
continuously over the interval between tearly and T, starting at an initial
value of Ã(tearly):

dÃ

dt
$ !

Ã2

z
, with Ã+tearly, $

z

tcarly
. (13)

The solution of this differential equation, Ã(t), converges on the correct
slope, Ã( T) " z/T, by the end of the longer-than-expected duration.
Moving the !Ã 2 term to the left side of Equation 13 and integrating both
sides with respect to t gives the following:

&
Ã+tcarly,

Ã+T,

& Ã!2dÃ $ &
tcarly

T

1

z
dt

f
z

Ã+T,
$ T. (14)

At time T, the slope Ã(t) stops changing and preserves its now correct
value, Ã( T) " z/T, for the next timing trial. Finally, since Ã(t) " S(t) ! )
- 0.5, the slope-change rule (Eq. 13) becomes a weight-change rule:

dS

dt
$

!+S & ) % 0.5,2

z
. (15)

The performance of both learning rules is illustrated in Figure 3, b and c.
Training example durations are plotted against trial number as squares.
The update rules were applied to generate the predicted time on the
subsequent trial; predictions are plotted as circles. Predictions of this
deterministic-ramping version of the model (which captures the true
model’s average dynamics) had time-scale-invariant Gaussian noise
added to ensure that the learning rules worked in the face of realistic
levels of noise. The first 50 trials used a training duration of 10 s on
average, with a small amount of trial-to-trial variability; the next 25 trials
used an average 2 s duration; and the last 25 used an average 5 s duration.
At the first trial of a new average example duration, the timer severely
misestimates the actual duration; by the second trial, its estimate is as
good as it will be at any other point during the block of constant dura-
tions (on trial 0, the prediction was arbitrarily chosen to be 100 s and is
not plotted).

Although these update rules are deterministic, they still work in the
face of noise in both training examples and predictions. The timer elapses
early as often as it does late, so that the mean prediction time equals the
mean observation time. However, substantial sequential effects should
be produced under this model. Less pronounced sequential effects and
more gradual learning of duration examples can be achieved simply by
multiplying the right sides of Equations 11 and 15 by a learning rate
constant l % 1 (Fig. 3c, where l " 0.1).

The biological plausibility of these rules is debatable. In favor of plau-
sibility, we note that the parameters of both learning rules represent
quantities such as firing rate and synaptic strength that are local to the
weights being learned, or that can be transmitted by diffuse, lateral inter-
actions among clock pulse generator units. Less parsimoniously, these
rules’ nonlocal parameter (the threshold value z) must be estimated at the
synaptic site of learning through a slow process, e.g., by reward-guided
hill-climbing over many trials. Furthermore, two different learning pro-
cesses occur depending on the type of error (early or late), possibly re-
quiring more cellular machinery than a single process would. The
importance of timing to survival may nonetheless have supplied enough
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selective pressure for such mechanisms to evolve, since these rules are the
only rules by which a ramping timing model can learn accurately from
single exposures. As we will show, if animals use neural integration to
time intervals, then behavioral evidence strongly favors the neural imple-
mentation of rules similar to these.

Beat the clock: a timing task that tests learning speed
We will evaluate the SRT model primarily by comparing its predictions
to existing behavioral data in the literature [obtained from male Sprague
Dawley rats in the data sets of Church et al., (1998) and Yi (2007)].
Testing one feature of the model, however—its learning speed—requires
a type of behavioral task that is less widely used, in which participants
issue a single response at a time that is as close as possible to some target
duration signaled by a salient cue.

For learning to take place in such a task without abstract forms of
feedback (e.g., verbal or graphical indications of timing accuracy follow-
ing a response), target durations must be experienced by participants.
Thus, salient cues are needed to signal their onsets and offsets. Yet allow-
ing responding to occur after a cue signaling the end of a duration makes
it easy to perform such tasks without timing, simply by doing signal
detection. We therefore developed a novel task, the beat-the-clock task,
in which participants must respond before (but as close as possible to) the
offset of the duration stimulus. At that time, reward feedback is presented
whether participants have responded or not. To test learning speed, tar-
get durations are held constant within miniblocks of trials, but they
change frequently and unpredictably many times per session. This task
requires the anticipation and planning of a timed response to maximize
monetary rewards.

The instantiation of this task that we gave to human participants involves
a deadline for responding to changes in a persistent visual stimulus, a square
in the center of a computer screen. At trial onset, a green square appears.
If the deadline is not missed, a red border briefly appears around the
square when the participant responds. At the deadline, the square

disappears and reward feedback is displayed
until the next trial. Participants respond by
key press to receive a monetary reward. Re-
sponses that occur after the deadline earn no
money. Responses that occur before the
deadline earn a reward that is an exponential
function of time ($0.25 ! e !6 ! (T ! t )/T, with t
denoting current time in the trial and T the
target duration), increasing from nearly $0 at
the start of the interval up to $0.25 at the time
the stimulus disappears. Thus, optimal
(reward-maximizing) performance in this
task requires responding, on average, at a
time just before the deadline.

Participants were explicitly instructed not to
count, tap, or adopt any rhythmicity to time
the intervals. Counting strategies dramatically
increase timing precision in humans (Rakitin
et al., 1998), and counting could also be used to
achieve rapid changes in time estimates. To
prevent covert counting, we simultaneously
present a distractor task. A sequence of digits is
shown continuously in the middle of the view-
ing screen, except during reward feedback,
with the digits changing rapidly and at irregu-
lar intervals (digits are visible for an exponen-
tially distributed duration, with a mean of 500
ms, lower limit of 100 ms, and upper limit of
5 s; interdigit intervals are exponentially dis-
tributed with a mean of 50 ms and upper limit
of 100 ms). Any “3” that appears requires
pressing a button other than the timing re-
sponse button (target “3” durations are always
2 s, to allow for sensorimotor latency). The to-
tal reward earned at the end of the task is re-
duced by the proportion of target stimuli not
detected.

We collected data from 17 human participants (eight males, nine
females) recruited from the Princeton University Psychology Depart-
ment’s paid experiments website. Each participant performed a 1-h-
long session of the beat-the-clock task divided into 5 min blocks. Each
block of trials was divided into miniblocks, within which the duration
of the stimulus being timed was fixed. Intertrial interval durations
were temporally unpredictable, drawn from a truncated exponential
distribution (location parameter, 2 s; lower bound, 1 s; upper bound,
5 s; mean, 22.4 s).

To prevent anticipation of a change in the target stimulus duration,
miniblock lengths were gamma distributed with a mean of 7, shape pa-
rameter of 21, and scale parameter of 1/3 (additionally, miniblock
lengths were truncated, with a lower limit of 4 and an upper limit of 20).
Across miniblocks, the stimulus duration T performed a random walk,
generated by the following algorithm for determining the ith block’s
stimulus duration:

T+i % 1, $ T+i, % 0.8 ! +8 & T+i,, % 0.5 ! t+i, ! !+0, 1,.

(16)

The random walk was thus attracted to a value of 8 s, but any given
miniblock’s stimulus duration was likely to be 50% larger or smaller than
the duration in the preceding miniblock. A single set of intertrial inter-
vals, stimulus durations, and miniblock lengths was used for all partici-
pants, so that group performance could be examined with the same set of
transitions among learned durations.

Results
We first derive analytical results for the opponent Poisson diffu-
sion model: (1) it requires a fixed threshold, set to the maximum
possible value, to minimize the variance of its time estimates; (2)

Figure 3. a, Example of a learning sequence. After an accurately timed duration T1, a late response for duration T2 triggers the
late-timer rule and a punctate increase in the active start-to-clock pulse weight proportion S. A subsequent early response for
duration T3 triggers the early-timer rule and a continuous decrease in S until the end of the stimulus. The final repetition of T3 is
timed correctly. Top row, Ramp slope as a function of time. Note that the slope is constant whenever the timer is running. Middle
row, Ramping timer. Bottom row, Stimulus. b, Performance of the weight-learning algorithm illustrating one-shot learning, with
a learning rate of 1. c, Slower learning performance with a learning rate of 0.1.
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parameterizing the model in this way leads to time scale invari-
ance; and (3) the ratio of skewness to CV of the model’s time-
estimate distributions must always equal 3. Next we compare the
model’s predictions regarding steady-state response time distri-
butions with existing rat behavioral data and other data from
nonhuman species. Finally, we discuss behavioral evidence for
the rapid duration learning made possible by the learning rules of
Equations 11 and 15, including results from the beat-the-clock
experiment.

Optimal temporal estimation by the opponent Poisson
diffusion model
For a drift-diffusion model (Eq. 1) with drift A, diffusion coeffi-
cient c, and a single threshold z, the response-time density is the
Wald or inverse Gaussian density (Wald, 1947; Luce, 1986). This
density, defined over first-passage times t, can be expressed most
conveniently in terms of the threshold-to-noise ratio, * " (z/c) 2,
and the threshold-to-drift ratio, + " z/A, as follows:

p+t, +, *, $ # *

2,t3% 1/ 2

! exp#!*+t & +,2

2+2t %. (17)

Examples of inverse Gaussian densities corresponding to varying
levels of noise but with equal means are shown in Figure 4.

The first three moments of the inverse Gaussian distribution
are as follows:

E+t, $ +; (18)

-2 ' Var+t, $
+3

*
; (19)

Skewness+t, $ E (#t & +

- %3) $ 3 ! "+

*
. (20)

The CV of first-passage times is therefore as follows:

-/+ $ "+3

*
!

1

+
$ "+

*
. (21)

As we now show, Equation 21 implies an important property of
the opponent Poisson timing model: that optimal time estima-
tion requires keeping the threshold fixed and adapting the drift to
time different durations, which in turn implies time scale
invariance.

Translating back into the model’s basic parameters, A, z, and c,
gives the following expression for -:

- $ "+3

*
$

z3/ 2/A3/ 2

z/c
$

cz1/ 2

A3/ 2 ,

fCV $
cz1/ 2

A3/ 2 !
A

z
$

c

"Az
. (22)

Substituting c " m(A from Equation 4 into Equation 22 gives
the following:

CV $
m"A

"Az
$

m

"z
. (23)

Optimal time estimation requires minimizing both E[(t ! T)2]
and Var(t), where T is the duration of the interval being timed. It
is easy to minimize the first quantity by setting + " z/A & T,
making t an unbiased estimate of T. Minimizing Var(t) under the
constraint that z/A " T is equivalent to minimizing the CV,
m/(z. The drift A no longer factors into this quantity, so maxi-
mizing z minimizes the CV for all durations. Plausibility requires
that z is bounded above by some value zmax. Thus, we set z to its
maximum for all values of T and use the learning rules of Equa-
tions 11 and 13 to set A " zmax/T. We thereby obtain a constant
CV (an extension of Weber’s law to the domain of interval tim-
ing) and superimposition of mean-normalized response-time
distributions—i.e., time scale (or “scalar”) invariance (Gibbon,
1977).

Whether or not the threshold is fixed at zmax, the expressions
for mean, variance, and skewness in Equations 18 –20 imply that
a specific relationship must hold among the first three central
moments of the response time distribution for the drift-diffusion
model, namely, that the skewness equals three times the CV. This
strong prediction of the model might seem to conflict with a
general consensus in the timing literature that timed response
time distributions are approximately Gaussian (implying a skew-
ness of nearly 0). For a small enough CV, however, a skewness-
to-CV ratio of 3 implies only a very small positive skewness, and
in any case, it is well known that a heavier right tail often arises in
empirical response time distributions in timing tasks (Roberts,

Figure 4. a, Inverse Gaussian probability densities generated by a one-dimensional drift-
diffusion process (dx " A ! dt - c ! dB) starting at x " 0, with drift A " 0.5, a single threshold
z " 1, and various levels of noise c (here c is not proportional to (A). All distributions shown
have a mean of 2. As c goes to 0, this density converges on a delta function with all of its mass
located at exactly 2. The CV in all cases is c(2. b, A comparison of inverse Gaussian (red),
gamma (green), and normal (blue) distributions with identical CVs, shown for a decreasing
sequence of CVs from 0.4 to 0.05 as the mean increases from 5 to 25.
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1981; Cheng and Westwood, 1993; Cheng and Miceli, 1996; Raki-
tin et al., 1998). In the next section, we show that data from rats in
the peak-interval task are clearly consistent with this prediction.

Before considering fits to empirical data, it is worth noting that
BeT also predicts a skewed response time distribution (Killeen and
Fetterman, 1988). The absence of inhibitory inputs to the accumu-
lator in BeT and SET and the comparison of its excitatory spike
count to a deterministic, integer-valued threshold results in a
gamma distribution of response times (specifically an Erlang distri-
bution) (Ross, 1998) with shape parameter . and scale parameter /.
The rate of excitatory spikes equals 1//, and the threshold is .. For
this model, the mean is ./, the SD is /(., the CV is 1/(., and the
skewness is 2/(.. In contrast to the drift-diffusion model, these
expressions imply that skewness equals two times the CV, rather
than three. [These skewness-to-CV ratio values of 2 and 3 happen to
equal the respective indices of the gamma and inverse Gaussian dis-
tributions in the family of “Tweedie distributions,” a subset of the
exponential family of distributions that also includes the Poisson,
with an index/skewness-to-CV ratio of 1, and the normal, with an
index/skewness-to-CV ratio of 0 (Jorgensen, 1987).] As their respec-
tive threshold parameters go to infinity, the CV and skewness of both
the gamma and inverse Gaussian distributions go to 0, and both
converge to a normal distribution (Fig. 4b). However, the gamma
and inverse Gaussian also approximate each other closely even for
thresholds of, e.g., 100 (CV " 0.1), at which level noticeable skew-
ness and deviation from normality are still present.

Importantly, though, it is difficult to interpret the ticks
counted in BeT as individual action potentials. Since a CV of 0.1
implies . " 100, timing a 100 s interval would require a clock
spike rate of 1 Hz (1// " 1), which seems implausibly low [in-
deed, BeT is presented by Killeen and Fetterman (1988) in terms
of transitions between abstract behavioral states, not in terms of
firing rates]. If high-rate excitatory spike trains could simply be
counted up to a large threshold without any background noise
present, then CVs for this model could easily be reduced by or-
ders of magnitude below what is observed in behavior. Integrat-
ing an inhibitory spike train along with the excitatory spike train
(setting # ' 0 in Eq. 3), however, gives the model enough flexi-
bility to fit behavioral data while accommodating realistically
higher spike rates.

Opponent Poisson diffusion model fits to behavior
We now show that maximum likelihood fits of inverse Gaussian
distributions to timing data from rats are better than fits of
gamma and normal distributions. We further show that
skewness-to-CV ratios are closer to the predicted 3 of the inverse
Gaussian distribution than the predicted 2 of the gamma distri-
bution and the predicted 0 of the normal distribution. Previously
published behavioral data from rats (Church et al., 1998) were
obtained using the peak-interval procedure (described below).
We also examine findings from other species that show evidence
of timing by drift diffusion.

Peak-interval task performance in rats
In the peak procedure (Catania, 1970), subjects are presented
with a randomly interleaved sequence of reinforced, discrete
fixed interval (FI) trials and nonreinforced “peak” trials that last
much longer than the FI trials. In the FI trials, subjects are rein-
forced for their first response after the fixed interval elapses rela-
tive to the onset of a cue, whereas no reinforcement is delivered in
peak trials. When responses are averaged across many peak trials,
the rate of responding (e.g., lever pressing) increases smoothly as
a function of time into the trial, reaches its peak at around the

time of reinforcement availability, and then smoothly decreases
thereafter. The resulting response rate distribution, or peak re-
sponse curve, is typically approximately Gaussian, often with a
slight positive skewness (e.g., Roberts, 1981).

Church et al. (1994) showed, however, that the response rate
in individual peak trials is not a smooth function of time. In
individual peak trials, responding instead follows a “break-run-
break” pattern, in which subjects abruptly increase the rate of
responding midway through the usual interval (the start time)
and abruptly decrease their response rates after the interval
elapses without reward (the stop time). “Middle times” are de-
fined as the times halfway between start and stop times; these
approximate the times at which response rate curves reach their
peaks. Analyses of middle time distributions are less vulnerable to
averaging artifacts than analyses based on raw response rate
curves, which can be contaminated by numerous sources of
noise. Across trials, the shapes of start, stop, and middle time
distributions are similar to the response rate curves themselves,
but are more positively skewed.

To evaluate how well the opponent Poisson model’s predicted
inverse Gaussian distribution fits rat behavioral data, we analyzed
the last 10 sessions of the previously published peak-interval data
of Church et al. (1998), in which separate groups of five rats
received extensive training (50 sessions) with one of three differ-
ent intervals: 30, 45, and 60 s. We estimated the trial-based ex-
pected time of reinforcement using the middle times (Church et
al., 1994). Start and stop times were estimated using a relative
likelihood change point detection algorithm, which decides at
each point in time whether an increase in the response rate has
occurred. We used one liberal (Bayes factor, 10) and one conser-
vative (Bayes factor, 100) decision criterion for change point de-
tection (for details, see Balci et al., 2009b); the midpoint estimates
were essentially the same regardless of the criterion. Similar re-
sults were obtained with the ordinary least squares– cumulative
sum procedure used by Church et al. (1994). In calculating these
values, we adopted exclusion criteria commonly used in the tim-
ing literature; specifically, we excluded trials in which the start
time exceeded the FI, the stop time was less than the FI, or the
stop time exceeded three times the FI (cf. Cheng and Miceli, 1996;
Balci et al., 2008a). We compared fits of Gaussian, gamma, and
inverse Gaussian distributions to the data, and we further esti-
mated the CV and skewness of these middle times (computed
from the empirical data) to test whether the skewness-to-CV ra-
tio equaled the predicted value of 3.

Figure 5a shows the distribution of middle times for 30, 45,
and 60 s intervals, with middle-time CVs approximately equal to
0.2 across all durations. Fitted inverse Gaussians are superim-
posed on the empirical histograms. Inverse Gaussians fit the data
better than the gamma and normal distributions (regardless of
the change point algorithm’s decision criterion), as demon-
strated by the larger log likelihood values for the inverse Gaussian
in Table 1 (all three models have the same number of free param-
eters, so they are comparable in terms of model complexity).
Given these log likelihoods, the inverse Gaussian is more likely
than the gamma, which is much more likely than the Gaussian.
Unfortunately, because +/* " (1 - #)/(1 ! #)/z, any increase in
z can be compensated by a suitable increase in #. Thus, fits of the
inverse Gaussian do not uniquely specify values of # and z in
Equations 3 and 4.

Figure 5b shows the superimposition of the fitted inverse
Gaussian distributions after rescaling the time axis by the average
middle time. The near-perfect match indicates the time scale in-
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variance of the middle times (Church et
al., 1994, their Fig. 9, and Church et al.,
1998, their Fig. 4b, which plot middle
times that we also find are better fit by
inverse Gaussians than by normal or
gamma distributions). The superiority of
the inverse Gaussian fits coupled with
clear evidence of time scale invariance is
also consistent with an opponent Poisson
diffusion model of timing in which the
threshold is constant and drift is adapted
across conditions, since the CV of such a
model is inversely proportional to the
square root of the threshold (Eq. 23).

These results are sufficient for selecting
the inverse Gaussian over the normal and
gamma. Statistical analysis is needed,
however, to determine whether skewness
is the feature of the data that gives the inverse Gaussian its advan-
tage. We found that this was the case. When averaged across
different durations and change point decision criteria, the esti-
mated skewness-to-CV ratio of the data was close to 3 (mean,
2.57; SEM, 0.64). This ratio was significantly different from 0
(which holds for the normal distribution; t(14) " 3.99; p "
0.0013) but was not significantly different from the predicted
ratio of 2 for the gamma (t(14) " 0.887; p " 0.39) or from the ratio
of 3 for the inverse Gaussian (t(14) " 0.67; p " 0.52). The same
results held when the analysis was conducted separately with dif-
ferent change point decision criteria.

Our analysis of a separate published data set (Yi, 2007), in
which 12 rats were tested on the peak procedure with 60 and 120 s
intervals corroborated these findings. When averaged across dif-
ferent durations and decision criteria, the skewness-to-CV ratio
was 3.07 (SEM, 0.53) for this data set. This value was significantly
different from 0 (t(11) " 5.82; p % 0.001), trended toward a sig-
nificant difference from 2 (t(11) " 2.23; p " 0.067), and was not
significantly different from 3 (t(11) " 0.13; p " 0.90). Similar
results have also been observed in other data sets and using dif-
ferent start- and stop-point algorithms (Church et al.,1994) on
the same data set (D. Freestone, personal communication). Thus,
skewness appears to be the feature of the data that distinguishes
the fit quality of these distributions: the gamma can accommo-
date a larger skewness for a given CV than the Gaussian, and the
inverse Gaussian in turn can accommodate a larger skewness-
to-CV ratio than the gamma, and this ordering echoes that of the
model-fit qualities.

Inverse Gaussian response time distributions across
nonhuman species
Across species, when individual, timed responses are analyzed
(i.e., middle points rather than the entire peak response curve),
we find that the literature contains many more examples of in-
verse Gaussian-distributed response times across species. For in-
stance, in a task used by Brunner et al. (1992), starlings invested
foraging time on a patch that delivered reward with fixed inter-
reward times. In an unpredictable manner, the patch was fully
depleted (i.e., rewards were no longer available), and in those
cases subjects were observed to “give in,” i.e., to stop responding
at a patch, at some point after the fixed interreward interval had
elapsed without reward delivery. The decision to give in could
only be made by tracking the elapsed time. In line with our anal-
ysis of peak-interval middle times, the distributions of such
giving-in times were found to be inverse Gaussian (Gibbon and

Church, 1990) and time-scale-invariant. Approximately inverse
Gaussian start, stop, and middle times have also been observed in
other studies (e.g., Church et al., 1998; Matell and Portugal,
2007), and the peak response curve itself appears inverse Gauss-
ian, with a large CV and extreme positive skewness, in lower
organisms such as goldfish (cf. Drew et al., 2005).

Despite these consistent patterns, however, the shape of be-
havioral response distributions has usually been dismissed in
modeling efforts, since positive skewness in empirical data can
arise from multiple sources of response time variability in a
model (for discussion that recommends ignoring skewness for
these reasons, see Gibbon and Church, 1990). Both the Poisson
counter and opponent Poisson diffusion models of timing, how-
ever, make strong a priori predictions about skewness that can be
tested unambiguously. Thus, distributional shapes clearly have
the power to distinguish among distinct but closely related hy-
potheses about the neural basis of timing, at least when behav-
ioral CVs are 0.2 or greater.

We have now seen that a single, inverse Gaussian distribution
with different parameter values can account for timing behavior
across species. Relatively smaller values of *— corresponding to
larger values of c in Equation 1—are found for rodents compared
to humans, and response rate curves for goldfish require still
smaller * values. These differences in precision may have resulted
from differences in the task performed, from innate differences in
the level of noise c perturbing neural processing in each species,
or from a combination of both factors.

Figure 5. Inverse Gaussian fits of middle times of rat response time distributions in the peak-interval task. Middle times
(midpoints of distinct periods of high-rate responding in individual peak trials) are correlated with overall mean response times but
may provide a better measure of an animal’s underlying reward-time estimate. a, Empirical distributions (histogram) and fitted
inverse Gaussian densities for behavior in 30, 45, and 60 s schedules. b, Time scale invariance is demonstrated in plots of fitted
densities against a normalized time axis, with time divided by the mean middle time.

Table 1. Fits of Gaussian, gamma, and inverse Gaussian distributions to middle
times of rat behavioral data from the peak-interval procedure, indicating clear
superiority of the inverse Gaussian fits

Gaussian Gamma Inverse Gaussian

30 s log likhd., !1803.46 log likhd., !1787.62 log likhd., !1784.44
+N " 30.91 k " 22.98 + " 30.91
- " 6.55 / " 1.35 * " 692.70

45 s log likhd., !1812.96 log likhd., !1801.06 log likhd., !1799.42
+N"45.90 k " 27.65 + " 45.90
- " 8.84 / " 1.66 * " 1239.40

60 s log likhd., !1381.05 log likhd., !1371.13 log likhd., !1370.27
+N " 62.47 k " 23.40 + " 62.47
- " 13.12 / " 2.67 * " 1417.48

Larger log likelihood (likhd.) values indicate better fits; all models considered have equal complexity (two parame-
ters). Parameters are as follows: Gaussian, mean +N, standard deviation -; gamma, shape k, scale /; inverse
Gaussian, mean +, shape *.
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Evidence for rapid learning of duration in rodents
and pigeons
Evidence for rapid learning of temporal intervals has been dem-
onstrated in rats under aversive conditioning paradigms after a
single delivery of a shock (Davis et al., 1989; Bevins and Ayres,
1995). For instance, Bevins and Ayres (1995) varied the latency of
a single shock for different rats in contextual fear conditioning
and observed that the peak and spread of the distribution of
freezing responses increased as a function of experienced shock
latency.

Experiments using positive reinforcement have demonstrated
abrupt, if not immediate, adjustments to manipulations of tem-
poral task parameters. Meck et al. (1984), for example, showed
that rats adjusted the time of maximum-rate responding abruptly
in two steps rather than gradually when a fixed interval to reward
was changed from 10 to 20 s and from 20 to 10 s in the peak-
interval procedure (Catania, 1970; Roberts, 1981), a pattern ob-
served only in individual subjects’ data.

Another form of data suggesting rapidly updated, temporally
controlled behavior involves wait time: the time spent waiting
before resumption of responding after consuming a reward.
Wynne and Staddon (1988), for example, showed that pigeons set
wait time durations to a fixed proportion of the scheduled inter-
food interval, and that they can update wait times within a single
interval after a change in interval duration. In rats, Higa (1997)

showed asymptotic convergence on a new
waiting time over approximately five
trials.

While these data all suggest an ability
to update temporal representations rap-
idly, a more powerful test of learning
speed would use a much larger number of
target interval durations, and transition
unpredictably among these target dura-
tions after each is held constant for a rela-
tively small number of trials. The beat-
the-clock task introduced in Materials
and Methods has these properties, and
humans do show evidence of extremely
rapid learning in this task, as we now
describe.

Human beat-the-clock performance
All 17 participants in the beat-the-clock
task showed evidence of extremely rapid
learning. Figure 6a shows plots of re-
sponse times as a function of trial number
for a typical participant (blue points, with
connecting lines indicating consecutive
sequences of on-time responses for one
participant). These are superimposed on
indicators of the stimulus duration as-
signed to the miniblock (green circles).
Late trials are indicated with red stars in-
side the circles. The on-time responses
closely track the actual stimulus dura-
tions, as shown in Figure 6b. There the
average, normalized timing error for on-
time responses (i.e., timing error divided
by stimulus duration) is plotted as a func-
tion of the trial number into a new mini-
block. Figure 6c shows the proportion of
failures to respond on time (including

omitted responses and late responses within 200 ms of the dead-
line) as a function of the same trial numbers. Significant im-
provements in timing error and on-time proportion occurred in
the first trial for all participants, and on the second for a subset of
participants (Wilcoxon ranksum test, p % 0.05), but not thereaf-
ter. The great majority of this improvement occurred in the first
trial following a transition.

Figure 6d shows scatterplots of the response time on a given
trial versus the stimulus duration in the current miniblock. On
the first trial of the miniblock, there is no obvious relationship
between response times and stimulus durations. By the second
trial of the miniblock (Fig. 6e), however, the response times fall
close to the identity line. Thus, one trial sufficed for timing per-
formance to reach asymptote for some participants, and even the
lowest-earning participants reached asymptote by the third trial
of a new miniblock. Across participants, the mean R 2 values for
trials 1 to 4 after the start of a miniblock were, respectively, 0.41,
0.72, 0.79, and 0.80. After Bonferroni correction for multiple
comparisons, the R 2 value on trial 1 was significantly different
than in all other trials, but no other pairwise differences were
significant at p % 0.05. Similar results held for normalized earli-
ness and proportion of late responses on each trial.

All of these improvements occurred despite the secondary
task designed to prevent counting (described in Materials and
Methods). Preventing explicit, subvocal counting is critical, since

Figure 6. Individual human performance in the beat-the-clock task. a, Stimulus durations (green circles), timed responses
(blue stars), and late responses (red stars). b, Average, mean-normalized timing error on trials 1, 2, 3, and 4 of each miniblock. Error
bars indicate the SD of the earliness error. c, Proportion on the same trials of failures to respond on time. d, Scatterplot of response
times as a function of stimulus duration on the first trial of each miniblock. The identity line is dotted; the best linear fit (R 2 " 0.33)
is dashed (on this trial, linearity is an artifact; all points must be below the identity line since participants cannot make responses
later than 200 ms after deadline). e– g, Response times versus stimulus duration on the second, third, and fourth trials of each
miniblock, respectively. R 2 asymptotes at around 0.9 one trial after miniblock transition.
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rapid changes in time estimates could be achieved by counting
alone, rather than by adapting an implicit timing mechanism.
Although it is possible that some participants refused to follow
our requests not to count and managed to do so despite the
secondary distractor task, pilot data from two of the authors (F.
Balci and P. Simen) who did not count showed the same pattern
of rapid learning. Indeed, all participants showed similar learning
patterns, suggesting that explicit counting is unlikely to provide a
general explanation for our results.

The data also show that participants timed their responses so
as to maximize rewards in the task. Assuming that response times
are scale invariant, the optimal (i.e., reward-maximizing) aim
point for a participant is a fixed proportion of the interval dura-
tion. This proportion is closer to 1 for participants with smaller
CVs, who therefore have a smaller chance of missing the deadline
than those with larger CVs, given the same aim point. For each
participant, the mean on-time response time was indeed close to
a fixed proportion of the interval duration, as shown by the high
R 2 values for response times versus interval durations. Empirical
aim points were estimated from the on-time response times, nor-
malized by the target duration, using the mean of the best-fitting
inverse Gaussian distribution, truncated to exclude probability
mass beyond the deadline. These aim points were then compared
to the optimal aim points for the corresponding CVs. As Figure 7
shows, all but two participants come remarkably close to aiming
at the reward-maximizing proportion of each interval (the small
size of beat-the-clock data sets and the artificial negative skewness
imposed on the response time data by the deadline cutoff com-
bined with frequent changes in target duration make it difficult
for any distribution with zero or positive skewness to fit these
data well, but aim points are similarly close to their optimal val-
ues under fits of truncated normal and gamma distributions).
These results are consistent with other studies of optimal tempo-
ral risk assessment (e.g., Hudson et al., 2008; Balci et al., 2009a;
Jazayeri and Shadlen, 2010), but they extend the durations timed
by an order of magnitude relative to these studies.

Supplemental Figure 12 (available at www.jneurosci.org as
supplemental material) shows that the model behaves in the same

way. Supplemental Figure 11 (available at www.jneurosci.org as
supplemental material) demonstrates that both human partici-
pants and the model produce similar, positive autocorrelations of
response time out to lags of five trials. Since late responses are
extremely costly, we parameterized the model to aim for a time
that was short of the deadline by 1 SD of the set of first-passage
times (the reward-maximizing aim point differs from this value
slightly, but only a relatively small amount of reward is lost by this
simple choice). To time the interval, the learning rules were ap-
plied on every trial. Biasing toward early responding was then
accomplished by reducing the threshold for responding (but
without changing the threshold z used in the learning rules to
estimate the deadline durations).

The learning speed exhibited by human participants in this task
poses a challenge for any model of implicit interval timing that does
not possess an easily implemented, one-shot learning rule capable of
perfect accuracy (on average). The opponent Poisson diffusion
model, however, can perform with the speed and accuracy that the
data demand, using extremely simple learning rules.

Discussion
We have shown that a noisy neural network can time intervals in
a way that is both psychologically and physiologically plausible.
This network—the SRT model at level 3 of our modeling hierar-
chy—times responses by controlling the rate at which average
activation in its integrator layer rises linearly to a threshold. This
pattern of ramping activity is consistent with firing rate data from
monkey parietal cortex (Leon and Shadlen, 2003) and presupple-
mentary motor cortex (Mita et al., 2009) in timing tasks. Rapid
updating of the model’s time estimates, and correspondingly
rapid changes in its ramp slopes, are consistent with behavioral
data in rats (Davis et al., 1989; Bevins and Ayres, 1995; Higa,
1997), mice (Balci et al., 2008b), and pigeons (Wynne and Stad-
don, 1988); with human behavioral data from the beat-the-clock
task; and with firing rate data from rat thalamic neurons
(Komura et al., 2001).

Because it effectively computes a running difference between
an excitatory spike count and a proportionally smaller inhibitory
spike count, the SRT model approximates a drift-diffusion pro-
cess with a noise coefficient proportional to the square root of the
drift, i.e., the opponent Poisson diffusion model at the top of our
modeling hierarchy. For this model, setting the threshold for
detecting the end of an interval to the maximum possible value
and adapting the drift parameter to time different durations
yields unbiased, maximally precise temporal estimation. This pa-
rameterization of the model also predicts time-scale-invariant
first-passage time distributions. It thus provides a simple, norma-
tive explanation for the time scale invariance observed in re-
sponse time data from timing experiments—a phenomenon
spanning multiple species, timing tasks, and orders of magnitude
of timed durations (Buhusi and Meck, 2005).

A key strength of timing models based on temporal integra-
tion is that they exploit the same computational principle of ac-
cumulation to a bound that defines the sequential sampling
family of decision-making models (Ratcliff and McKoon, 2008).
Response time distributions from perceptual decision-making
tasks are typically much more skewed than response time distri-
butions from timing tasks, but this discrepancy presumably oc-
curs because the noise in perceptual decision making includes a
large external component provided by the stimulus. In contrast,
the noise in timing may be largely internal and a consequence of
noisy neural processing.

Figure 7. Optimality analysis in the beat-the-clock task. The estimated aim point, as a pro-
portion of the deadline duration, is plotted with an open circle for each participant as a function
of individual CV. The reward-maximizing aim proportion is denoted by the solid curve (the ridge
of the expected gain surface). For each value of CV, the grayscale background and contour lines
represent the proportion of maximum reward expected, evaluated at every aim point.
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A second distinction between timing and perceptual decision
making involves response thresholds: previously, we have ob-
served reward-maximizing adjustments to response bias and
speed–accuracy trade-offs in perceptual decision making that are
best modeled as a process of strategic threshold adaptation in a
drift-diffusion model (Simen et al., 2006, 2009; Balci et al., 2011).
One of the theoretical strengths of sequential sampling models is
precisely their ability to accommodate speed–accuracy trade-offs
in terms of adjustable thresholds (Luce, 1986). Optimal timing,
in contrast, requires that thresholds must be held fixed and drift
strategically adapted to maximize precision. The presence or ab-
sence of an exogenous signal and a particular response–reward
contingency must therefore be capable of switching which pa-
rameter—threshold or drift—is adapted if reward-maximizing
performance is to be achieved more generally.

Nevertheless, a single set of integrator mechanisms already
used to model the neural basis of decision making through se-
quential sampling (cf. Gold and Shadlen, 2001; Usher and Mc-
Clelland, 2001; Bogacz et al., 2006) can clearly be parameterized
both to time intervals and to make perceptual decisions, suggest-
ing that common brain areas may subserve these arguably dis-
tinct behavioral functions. Because of the ease with which they
can be applied to both types of tasks, the SRT and opponent
Poisson diffusion models can also be used to perform a variety of
tasks that combine decision making and time estimation, such as
decision making under a response deadline, shorter–longer in-
terval comparison (Leon and Shadlen, 2003), and the “time-left”
task (Gibbon and Church, 1981) (supplemental Eq. 5, available at
www.jneurosci.org as supplemental material). Importantly, it
can also learn the durations on which these computations are
based in a single exposure.

Among existing timing models, the opponent Poisson diffu-
sion model is most closely related to scalar expectancy theory
(Gibbon, 1977) and the behavioral theory of timing (Killeen and
Fetterman, 1988). However, it modifies these models by adding
an inhibitory spike train, and it further departs from SET in as-
suming a fixed, rather than varying, threshold. As a result, the
model predicts inverse Gaussian distributions of timed responses
that fit behavioral data closely while accommodating much
higher spike rates than are allowed by a purely excitatory Poisson
counter model. We have shown, in fact, that inverse Gaussians fit
timed response distributions better than competing distributions
with the same number of parameters (the gamma distribution of
BeT and the approximately normal distribution of SET) when
behavioral CVs are large enough to distinguish these distribu-
tions from each other.

Among decision-making models, the opponent Poisson dif-
fusion model is most closely related to the “wave theory” model
of Link (1992). In Link’s (1992) model, a Poisson spike train
represents stimulus intensity as a spike rate proportional to the
intensity. In a greater–lesser comparison of two stimuli, the dif-
ference between spike counts for each stimulus is the decision
variable, which performs a random walk toward one of two
boundaries. When intensity A is multiplied by a constant K, the
just-noticeable difference between K 3 A and the comparison is
also multiplied by K. This is the classic form of Weber’s law. Thus,
opponent Poisson processing appears to account both for the
nontemporal form of Weber’s law and for time scale invariance in
interval timing.

In this article, we have restricted our attention to the type of
timed behavior that the model most naturally explains, which is
the planned production of a single timed response. This restric-
tion excludes a type of behavior for which the model can also

easily give an account: this is the emission of a sequence of re-
sponses in each trial of a task, as animals produce in the peak-
interval task, for example (Catania, 1970; Roberts, 1981). In
unpublished work, we have analyzed the performance of hierar-
chical compositions of timing circuits that fit the data in such
tasks. A detailed account of the operational details of such a
model is beyond the scope of the current paper, but its basic
principle is simple: for each response of the current SRT model,
the trigger layer can control the emission of packets of high-rate
responses generated by a hierarchically subordinate SRT circuit
with a much faster ramp rate (cf. Kirkpatrick, 2002).

The primary virtue of the diffusion and SRT timing models is
their simplicity: in addition to accounting for empirical data, the
SRT model is constructed entirely from the same components
used in computational models of decision-making circuits based
on neural integration. These in turn are hypothesized to imple-
ment classic psychological models of decision making based on
diffusion processes. Therefore, relatively little needs to be added
to these models to provide neurally plausible accounts of behav-
ior across a wide range of timing and perceptual decision-making
tasks. Furthermore, the rules governing adaptation in the model
give it flexibility and robustness, and a simple expression of the
statistics of its behavior is available based on the closed-form,
inverse Gaussian distribution, which closely fits response time
data from timing tasks. These results suggest that networks of
leaky integrators whose connection strengths are precisely tuned
by appropriate feedback mechanisms may subserve both tempo-
ral and perceptual processing in the brain.
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