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Abstract

Cognitive deficits associated with dorsolateral prefrontal cortex (DLPFC) damage are often most apparent in higher cognitive tasks that
involve problem solving and managing multiple goals. However, computational models of prefrontal deficits on such tasks are difficult to
construct. Problem solving is most naturally modeled with symbolic systems (e.g. production systems), but the effects of lesions are most
naturally modeled with subsymbolic systems (neural networks). We show that when we adopt a simple and plausible model of neural
computation, there is a natural and explicit mapping from symbolic, goal-driven cognition onto neural computation. We exploit this
mapping to construct a neural network model that is capable of solving complex problems in the Tower of London task. The model leads
to a specific hypothesis about the role of DLPFC in such tasks, namely, that DLPFC represents internally generated subgoals that
modulate competition among posterior representations. When intact, the model accurately simulates the behavior of college students even
on the most difficult problems. Furthermore, when the subgoal component is lesioned, it accurately simulates the behavior of prefrontal
patients, including the fact that their deficits are most apparent on the most difficult tasks and that they have special difficulty with tasks
that require inhibiting a prepotent response.
   2002 Elsevier Science B.V. All rights reserved.

1 . Introduction models of complex behavior. On the other hand, they are
not based on neuron-like processing units and are therefore

To date, most neurally inspired models of executive harder to map onto the brain than are neural networks. In
control have addressed relatively simple tasks that can be particular, they provide a less natural means for modeling
performed in about a second (e.g. Stroop, continuous the effects of brain damage (but see Refs. [20,26]). Neural
performance) [7,10,11]. However, patients with executive networks are easier to map onto the brain and are simple to
deficits are often most impaired on complex cognitive damage, but they are harder to apply to complex, sequen-
tasks that involve planning or problem solving. Therefore, tial behavior like problem solving (but see Refs. [4,14]).
an important challenge for cognitive neuroscience is to In this paper, we make three major points. Firstly, many
develop computationally explicit theories of the role of (but not all) aspects of goal-driven production systems
executive control in complex cognition. In this paper, we map quite naturally onto neural networks. Secondly, given
take a step in that direction by proposing a neural network this mapping, it is possible to build plausible neural
model of executive control in the Tower of London network models of complex problem solving. In particular,
problem-solving task. applying the mapping to the Tower of London task leads to

The most common approach to developing computation- a model that accurately simulates the behavior of intact
al models of complex cognition is to use symbolic (and adults as well as the behavior of patients with prefrontal
hybrid symbolic) production systems (e.g. ACT-R, Soar, damage. Thirdly, the resulting Tower of London model
EPIC) [1,28,34]. These systems are computationally leads to an explicit hypothesis about the role of dorsolater-
powerful, programmable, and embody independently moti- al prefrontal cortex in problem solving, namely, that it
vated theoretical assumptions about cognitive architec- represents internally generated subgoals that modulate
ture—all virtues that make them ideal for constructing among choices.

We begin by describing some key features of goal-
driven production systems. Then we describe a simple*Corresponding author. Tel.:11-734-647-6982; fax:11-734-763-
model of neural computation and argue that many aspects7480.
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neural computation. Finally, we use this mapping to function of the dynamically evolving contents of working
develop a neural network model of the Tower of London memory. In fact, production systems were originally
task and show that it can model both intact and damaged proposed as a psychological theory of control [32] in
behavior. response to the lack of explicit models of control in

cognitive psychology, and in response to the limitations of
existing control structures found in computer science at the

2 . Goal-driven production systems time. This was an important step toward eliminating the
homunculus from cognitive psychology by creating the

Most computational models of complex cognition are possibility of computationally complete models of cogni-
based on production systems. Production systems use tion in which memory, process, and control are all
symbolic IF–THEN rules, which are asymmetric associa- specified as part of the theory.
tions between patterns of symbols and which match against In addition to being able to respond flexibly to changes
memory and take actions and/or change memory. Fig. 1 in the environment (data-driven control), most production
provides an example of a production rule. The condition system models include a mechanism for top-down control
side (above the THEN) specifies the conditions under via goals and subgoals. In both ACT-R and Soar, for
which the rule will fire. If all of the elements specified on example, most productions include a condition that tests
the condition side are satisfied, then the production will for a specific goal /subgoal so that only productions that
fire (i.e. its actions will be taken). The action side (below are relevant to the current goal /subgoal are considered.
the THEN) specifies the actions that the production rule This top-down control can come either from externally
will take when its conditions are satisfied, in this case, provided goals (e.g. instructions) or from subgoals that
adding a new element to working memory. Changes to were generated internally by the system itself (e.g. remov-
working memory may then lead other productions to match ing an obstacle that is impeding progress toward an
and fire leading to further changes in working memory. externally provided goal). There are significant theoretical

The symbolic representations in production systems differences between the control structures of ACT-R,
commonly take the form of attribute–value pairs. For EPIC, and Soar which have important implications for
example, there are three attribute–value pairs in the neural models of control; for our present purposes, how-
production rule in Fig. 1. The condition side tests that the ever, we will focus on the common functionality of
attribute Letter1 has the value A and that the attribute supporting both goal-modulated and data-driven behavior.
Letter2 has the value T. If both these conditions are
satisfied, then the action side assigns the value AT to the2 .1. An example from the Tower of London task

1attribute Word.
Using production systems, it is possible to build models Fig. 2 illustrates the interaction of data-driven control

that behave flexibly and opportunistically in response to and top-down, goal-driven control in a Tower of London
changes in the environment. In particular, they provide a (TOL) task. The TOL task involves moving three colored
natural model of data-driven, interruptible control. Unlike balls in an initial configuration until they match a given
traditional programming languages in which top-down goal configuration [44]. Unlike the Tower of Hanoi task,
control is passed explicitly from one operation to the next there are no constraints specifying which balls can be
(typically to the next line in the program or to a sub- placed on which others, but the pegs differ in how many
routine), individual production rules fire opportunistically balls they can hold at one time (one peg can hold three
whenever their conditions are satisfied. The flow of control balls, another can hold two, and the other can hold only
is not laid out in advance but is determined at run-time as a one). Participants are often asked to try to figure out how

to achieve the goal in the minimum number of moves and
are sometimes asked to plan out the entire sequence of
moves before they begin [36,44].

A typical production system model for this task would
include production rules that propose legal moves. For
example, starting from the initial configuration in Fig. 2,
two production rules might match, one for each of the two
legal moves (moving the blue ball to the long peg and
moving the red ball to the long peg). A purely data-driven
production system without goal-driven control might use a

Fig. 1. An example of a simple production with two conditions and an
fixed conflict resolution strategy to choose between theseaction that changes the value of the attribute Word.
options, or simply choose randomly. More typically, a goal

1 or subgoal helps to resolve conflicts like these. ForThis description of production systems glosses over many important
example, the goal configuration in Fig. 2 specifies threedetails, including variables, variable binding, conflict resolution, and

working memory element identifiers. goals to be achieved (getting each of the three balls into
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Fig. 2. A Tower of London problem defined by its initial and goal states, and a sequence of moves leading to a solution.

their goal position). Such goals can provide top-down three simple and widely accepted assumptions about neural
control that leads the system to prefer the goal-achieving computation. (1) Representations in cortex are generally
move (the blue ball) over the other legal move. distributed across a population of neurons, rather than

In this case, the top-down control was based on an being localized to individual cells. (2) There is massive
externally provided goal, namely, the explicit goal configu- connectivity among neurons within local areas of cortex
ration in the problem statement. Internally generated and this connectivity is recurrent rather than unidirectional.
subgoals can also provide top-down control. For example, (3) Synaptic efficiency is modified based on the correlation
after moving the blue ball to the long peg, the red ball between pre- and post-synaptic activity (correlation-based
needs to move into the green ball’s location. But in order Hebbian learning).
to achieve this (external) goal, the green ball has to be Although these assumptions abstract away from a host
moved first. Of the four legal moves (moving red to the of details about neural computation, nevertheless they are
middle or long pegs, moving green to the long peg, sufficient to give rise to some important emergent prop-
moving blue back to the middle peg), only the green move erties. For our purposes, the most important of these is that
achieves this (internally-generated) subgoal and so it some distributed patterns of activation constitute discrete,
would be preferred. stable states to which the system will naturally converge

To summarize, modern production system architectures [23,24]. These activation patterns are termed attractors and
combine flexible, data-driven control with the ability to the networks themselves are known as attractor networks
exert top-down control as well. Flexible, data-driven (or Hopfield networks).
control arises from the use of asymmetric associations Fig. 3 illustrates the behavior of an attractor network.
between patterns of symbols (production rules) which can Assume that this network is frequently presented with
assume control whenever their conditions are satisfied. input that leads to activation of the red distributed pattern
Top-down control is provided by goals and subgoals that (assumption 1). Assuming massive, recurrent connectivity
lead the system to prefer goal-achieving actions to other (assumption 2), many of the units involved in the red
possible actions. Such top-down control can arise from pattern will be interconnected. Furthermore, under Hebbian
both externally specified goals as well as internally gener- learning (assumption 3), each time this activation pattern
ated subgoals. The combination of data-driven and goal- occurs the connections between these units will be
driven control is one of the features that make production strengthened. If this pattern occurs frequently enough, the
systems such a natural choice for modeling complex strengthening of these connections will lead the red pattern
cognitive behavior. to become a discrete, stable state for the system (i.e. an

attractor). For example, suppose that after frequent expo-
sure to the red pattern, the network is presented with input

3 . A simple model of neural computation that activates all the units in the red pattern except for one.
All the other units in the pattern that are interconnected

Having just described some of the major features of with that unit will have developed strong excitatory
symbolic models of control, we now describe a simple connections to that unit and hence they will immediately
model of neural computation and argue that there is a activate it. More generally, given any input pattern, the
natural mapping between the two. This model has proved network will converge on the discrete attractor pattern that
to provide leverage in explaining a variety of cognitive is most similar to that input pattern. Furthermore, once the
functions [5,13,16,22,25,31,40–42,47] and is based on network has converged on an attractor pattern, the excitat-
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Fig. 3. Convergence of a network to the attractor pattern shown on the right after initialization to the pattern shown on the left. Units that are inactive in
the attractor pattern gradually shut off if they are active, and units that are active in the attractor pattern gradually turn on if they are inactive (these units
are shown with a red outline in the first time slice).

ory connections among the units themselves will lead the retically neutral medium (e.g. there is no commitment at
activation to reverberate so that the pattern can be main- this level to any ontology of relations or features), it does

2tained even after the input has been removed. support combinatorial variety of representation, a func-
tional requirement in complex cognition [34].

Inherent in symbolic computational models are three
4 . Mapping goal-driven production systems onto important computational properties that help support this
neural networks representational capacity. These properties can be taken for

granted in symbolic models [27,33,45], but may not be
We now describe a mapping from some of the key transparent in neural network models and so it is important

features of goal-driven production systems onto attractor to make them explicit. Firstly, the combinatorial power of
networks. This mapping supports three important features: attribute–value representations depends directly on the
(1) symbolic representations (in particular, patterns of separation of attributes and values—a kind of modularity
attribute–value pairs), (2) asymmetric associations be- built into the representational format. This separation is
tween patterns of symbols, and (3) goal-driven control of what permits novel combinations of attributes and values
behavior. to be entertained. Secondly, attribute–value representations

are effectively equivalence classes that map aspects of an
4 .1. Attractor network realization of symbolic attribute– arbitrarily rich and continuous world into categories rel-
value representations evant to current goals. Thirdly, attribute–value representa-

tions are stable patterns. They are robust against func-
Production systems typically use some form of attri- tionally irrelevant perturbations of the external (and inter-

bute–value representation for the contents of working nal) environment, and persist for long enough stretches of
memory and the condition and action patterns in the time to influence behavior appropriately.
productions. Attribute–value pairs are a convenient for- All three of these properties of attribute–value repre-
malism that supports the representation of features and sentations are naturally supported to some degree by
relations. For example, the representation of a red square attractor networks. The separation of attributes and values
might include the featureskcolor redl and kshape squarel. can be mapped directly onto the distinction between
Although the attribute–value scheme is a relatively theo- attractor networks and attractor patterns. For example, the

size attribute might correspond to a single attractor net-
2 work in which the values (e.g.small, large) correspond toThis description of attractor networks also glosses over a number of

particular attractor states in that network. The attractorimportant details, including the interaction among different attractor
patterns in the same network, how input can change the energy landscapestates are discrete equivalence classes because they repre-
of the network and thereby change the stable states, and how differentsent points within an infinite representational space to
patterns can come to compete with each other (e.g. by including anti- which the network gravitates. The gravitation or settling
Hebbian learning or assuming that most units inhibit each other until

from some point in the space to the attractor constitutes thepositive Hebbian learning overcomes that default inhibition). For a more
process of mapping points to their equivalence class.detailed discussion of attractor networks, we refer the interested reader to

Hertz et al. [21]. Attractors are stable representations because attractors are
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stable points in the dynamical system. These properties of production systems. At this level, no control is exerted; if
attractor networks contribute to their widespread use as the condition part of a production rule is satisfied (i.e. if
pattern classifier systems and associative memories. the appropriate attractor patterns are activated), then the

As in a production system, the semantics of the attrac- production will fire and activate its action pattern.
tors (what the networks and attractors denote) is not The productions in Fig. 4 contain only a single con-
inherent in the form of the patterns or networks, but is a dition, but of course in general productions may specify a
function of the associations of those patterns with other conjunction of multiple conditions. The functionality of
patterns in the system, ultimately grounded in perceptual- multiple conditions is approximated in our mapping onto
motor systems. These associations, discussed next, are the attractor networks in the following way. Each of the
second key component of the mapping. conditions is encoded by a separate association from the

appropriate attribute pattern to the action pattern(s), just as
4 .2. Attractor network realization of production rules for productions with single conditions. The difference is

that the strengths of each of these associations are reduced
Productions are asymmetric associations between pat- so that the network representing the action side of the

terns of symbols (patterns of attribute–value pairs). The production does not settle into its attractor pattern unless
natural mapping to attractor networks is that productions all of the condition associations are providing input. This
correspond to asymmetric associations between sets of is an approximate mapping because networks constructed
attractor patterns. For example, Fig. 4 shows two pro- in this way are not guaranteed to behave exactly like a
duction rules:If Letter15 A then Response is ‘ A’, and If production system when the productions have overlapping
Letter25 T then Response is ‘T ’. The first production rule sets of conditions. For the present task, however, the
is implemented by an association between the attractor functionality is sufficient. (Multiple actions on the right-
pattern representing the attribute–value pairkLetter1 Al, hand side of a production can be easily handled by treating
and the attractor pattern representing attribute–value pair each action as a separate production.)
kResponse ‘A’l. The association consists of excitatory These associations between attractor networks add a
connections from one attractor pattern to another, such that new source of constant input to the networks, thereby
when the A pattern becomes active in the letter1 network, changing the dynamics of the attractors. One way to think
the ‘A’ pattern in the response network is also activated. about what is happening is that the new continuous source
The second production rule is implemented in a similar of input reshapes the attractor landscape so that it is
fashion. Such associations provide the fundamental mecha- strongly biased in favor of the target pattern of the
nism of data-driven or bottom-up processing inherent in production rule. The amount of bias, or the size of the

Fig. 4. Encoding of two productions which lead to conflicting responses on the left, and goal-driven selection of a unique response on the right. In the
situation on the left, the response network would ultimately settle on the representation of either A or T with equal probability. On the right however, A is
favored over T by excitation from the goal network, which represents a preference for a vowel response rather than a consonant response.
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attractor basins, is a function of the strength of the actions. It is important to note that the goal associations
associations between the condition side and action side can be both excitatory and inhibitory, and can bias the
attractor patterns. competition toward (or away from)sets of action patterns,

not just single actions. The basic attractor dynamics then
4 .3. Goal-driven control of behavior (typically) push the system into a single stable pattern that

represents the chosen action. The outcome of the competi-
In production systems, goals are explicit representations tion will of course depend on the strengths of the attractors

that bias behavior toward actions that the agent believes to and the strengths of both the data-driven and goal-driven
be on the path toward achieving the goals. There are a associations.
variety of mechanisms in current production system ar- This mapping is sufficiently well-specified that we have
chitectures that accomplish this, but there are at least three implemented it as an explicit production rule compiler.
critical functions that must be supported in all goal-driven The compiler takes as input production rules written in a
systems. (1) There must be some way to encode arbitrary restricted language and produces as output Matlab code
associations between goal representations and actions. that implements attractor networks that behave like the
These associations represent task-specific heuristic knowl- input production rules. There are still several important
edge about how to accomplish the task. (2) There must be computational features of symbolic production system
some way to encode arbitrary associations between the architectures that are not fully captured in this mapping.
current state and appropriate goals /subgoals to pursue. (3) Most prominent among these are variable binding, robust
There must be some mechanism that permits the knowl- sequencing, structured representations, and, as noted
edge about candidate actions and their desirability with above, the full functionality of multiple conditions. We
respect to current goals to be brought together dynamically have two reactions to these deficiencies. On the one hand,
to exert a choice over what to do next (whether an overt neural networks certainly lack important functionality that
external action or internal cognitive step). symbolic models provide and addressing these weaknesses

All three of these functions of goal-driven control are is an important topic for future research. On the other
directly supported by aspects of the mapping we have just hand, to the extent that our mapping is appropriate, it
provided from productions to attractor networks. The suggests that standard production systems may also be too
associations between goals and candidate actions are powerful as models of the neural computations that support
encoded as excitatory or inhibitory connections between cognition. For example, the attractor networks only ap-
attractors representing active goals and attractors represent- proximate conjunctive conditions because associations
ing possible actions to take. Similarly, the associations among common attractors interact—they are not complete-
between the current state and (sub)goals are encoded as ly independent and modular as they are in a symbolic
excitatory or inhibitory connections between attractors system. We suspect that this may be a case where the
representing aspects of the state and appropriate (sub)go- attractor network model characterization of computational
als. Finally, attractor dynamics provides the mechanism of power is closer to reality than the symbolic model. In any
choice: associations from goals to actions bias attractor case, all of these functions represent important and difficult
competition toward those actions that the agent’s knowl- research topics. For present purposes, we simply note that
edge indicates are best given the current goal, and the the system is powerful enough to model aspects of
choice is effected when the attractor settles into the nearest cognitive tasks that are more complex than is typically

3stable pattern given all the input. attempted with neural networks.
A simple example will help illustrate. Suppose that two

different production rules have their conditions satisfied
3We should also note that this composition of more complex neuraland are competing to activate different patterns of an
networks from multiple attractor networks does not yield systems that areattractor network. Fig. 4, left, shows two productions, one
mathematically guaranteed to behave in certain ways—unlike single

activating response ‘A’ and another activating response attractor networks, whose behavior is well understood and analytically
‘T’. In the absence of other input, both response patterns tractable. In particular, while the presence of continuous external input
will be activated, and the response network will eventually from other networks can be usefully thought of as reshaping the attractor

landscape, the dynamic nature of that input means that the network nosettle into one of the attractors (‘A’ or ‘T’) depending on
longer satisfies the formal definition of an attractor network. It is thereforethe strengths of the associations, the relative strengths of
crucial to empirically demonstrate that models developed with this

the attractor patterns themselves, and possible noise in themapping do in fact behave properly. Once basic functionality is estab-
system. lished for a particular task, we can explore whether the model provides an

Fig. 4, right, shows the same two production rules with adequate account of the behavior of normal subjects when supplied with
the task heuristics that subjects are assumed to have. Once the empiricalan additional goal representation biasing the competition in
adequacy of the model is established for normal subjects, we can alsofavor of vowel responses. The basic mechanism is the
explore how well lesioned versions of the model provide an account of

same as any production rule in the system: the prefrontal patients, and use the models to develop explicit hypotheses
goal→action association effectively changes the attractor about cortical function. The next section describes one such exploration
landscape so that larger basins correspond to goal-favoredof an attractor network model of the Tower of London task.
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5 . An attractor network model of Tower of London At the very least, any model of Tower of London must
be able to represent the current state (where the balls are,

As previously discussed, a central challenge for cogni- which balls are moveable/clear and which are blocked),
tive neuroscience is to develop computationally explicit the goal (where the balls need to go), and potential moves.
and neurally inspired models of executive control in Also, as previously discussed, any plausible model must
complex cognitive tasks. Models of complex tasks can be almost certainly be able to represent internally generated
constructed in goal-driven production systems, but map- subgoals, such as the subgoal to remove a ball that is
ping such models onto the brain (and especially onto brain blocking a goal-achieving move. Table 1 shows the set of
damage) is less straightforward. Conversely, neural net- attributes and values that we adopted to represent each of
works are a natural approach to developing neurally these four kinds of information as well as the types of
inspired models of intact and damaged behavior, but they knowledge (in the form of production rules) that we
are difficult to apply to complex cognition. We have included.
exploited the mapping (and compiler) just described to A single attribute was used to represent moves and its
construct a neural network model of the Tower of London values corresponded to legal moves (e.g. move red to
task and have used it to explore potential neural mecha- position6, move green to position2 . . . ). Similarly, we
nisms of executive control in complex problem solving. used a single attribute to represent the goal state and the

We began by constructing a production system model of current subgoal, both of which had values corresponding to
the task. Doing so served two purposes. Firstly, production ball-position pairings (e.g. red in position6). In the current
systems are a convenient formalism in which to specify state, we included one attribute for each of the six
assumptions about the representations and knowledge used positions on the gameboard (position1 on the short peg,
in the task and to verify their sufficiency for actually position2 and position3 on the medium peg, and
performing the task. Secondly, once we had built a positions4–6 on the long peg). The values of these
production system model of the task, we could exploit the attributes represent the content of the specified position in
mapping we had developed to build a neural network the current configuration (empty, blue, red, or green). We
model of the task with which we could explore the neural also included one status attribute for each of the three balls
mechanisms of control and the effects of damage to whose value indicates whether that ball is clear (moveable)
specific parts of the network. or blocked. Finally, we also found it necessary to represent

Table 1
Representations and knowledge encoded in the production system and attractor network model of the Tower of London

Representational medium

Type of content Attribute/network Values/attractors

Current state Position1, . . . , position6 Empty, red, green, blue
Red-status, blue-status, green-status Blocked, clear
In-target, above-source Empty, red, green, blue
Free-position Position1, . . . , position6, none

Move Move Red-to-1, . . . , red-to-6
Green-to-1, . . . , green-to-6
Blue-to-1, . . . , blue-to-6
None

Goal Goal Red-to-1, . . . , red-to-6
Green-to-1, . . . , green-to-6
Blue-to-1, . . . , blue-to-6
TOL (top-level), none

Subgoal Subgoal Red-to-1, . . . , red-to-6
Green-to-1, . . . , green-to-6
Blue-to-1, . . . , blue-to-6
None

Knowledge

Type of content Conditions/source of association Actions/ target of association

Legal moves Position1, . . . , position6 Move
Red-status, blue-status, green-status

Achieve (sub)goals Goal, subgoal Move
Remove blockers In-target, above-source, free-position Subgoal
Inhibit what’s done Position1, . . . , position6 Goal, subgoal

The top of the table shows the attributes/values and corresponding networks/attractors that were used as the representational medium for the system. The
bottom of the table shows the production rules and corresponding associations between attractors that were used to encode the knowledge in the system.



78 T.A. Polk et al. / Cognitive Brain Research 15 (2002) 71–83

three pieces of information about the current state in spond to attractor networks, values correspond to attractors
relation to the current goal. Specifically, the system needs (stable distributed activity patterns), and production rules
to represent explicitly what is in the target position for the correspond to asymmetric associations between attractors.
current goal, what if anything is above the ball to which Accordingly, we built attractor networks for each of the
the goal refers, and what position if any could be used as a attributes listed in Table 1 and set the internal weights so
placeholder for obstructing balls. (This information is that each network would have a sufficient number of
needed to generate new subgoals to remove balls that are attractors to correspond to all the different values that
blocking goal-achieving moves.) We therefore included needed to be represented. For example, we constructed
attributes for in-target, above-source, and free-position as attractor networks for each of the six positions and each of
part of the current state. For example, suppose the current these networks contained four attractor patterns (one
goal is to get the blue ball to position4 (the bottom of the corresponding to empty, another to blue, another to red,
long peg). Further, suppose the red ball is currently in and another to green). Similarly, we built an attractor
position4, that nothing is above the blue ball, and that network for moves that contained attractor patterns corre-
position1 (on the short peg, which for this goal is neither sponding to all possible moves (ball–target pairs) and
the source peg nor the target peg) is currently empty. In attractor networks to represent goals and subgoals. Finally,
that case, in-target would be red, above-source would be we built connections between networks to represent the
empty, and free-position would be position1. asymmetric associations reflected in the production rules.

In addition to the representational medium in Table 1, Fig. 5 shows a schematic of the resulting model. In
the system required knowledge, in the form of production keeping with the four types of production rules, we had
rules, about how to perform the task. Four types of four types of connections. (1) Connections to excite legal
knowledge were necessary. Firstly, the system needed to moves and to inhibit illegal moves (from current state to
know that it should consider legal moves and should not move in the figure). (2) Connections to excite (sub)goal
consider illegal moves. We therefore included production achieving moves and to inhibit other moves (from goal and
rules that tested aspects of the current state and proposed subgoal to move in the figure). (3) Connections to propose
moves that were legal (the ball to be moved is not blocked subgoals to remove balls currently blocking goal-achieving
and the target position is free and supported). Secondly, moves (from current state [specifically, above-source, in-
the system needed to know that it should make moves that target, and free-position] to subgoal in the figure). (4)
achieve goals or subgoals rather than just moving random- Connections to inhibit goals that had already been
ly. This knowledge corresponded to production rules that achieved (inhibitory connections from current state to goal
tested the goal /subgoal and voted for moves that achieved and subgoal).
a (sub)goal and against moves that did not. Thirdly, the Excluding the influence of the goal and subgoal net-
system needed to know how to generate new subgoals to works on behavior, the operation of the model is fairly
remove balls currently blocking goal-achieving moves. To simple. The representation of the current configuration
implement this knowledge, we included productions that excites all legal moves in the move network and moves
proposed moving balls that were in-target or above-source that involve blocked balls are strongly inhibited by the ball
(such balls would be blocking a goal-achieving move) to status networks. The legal moves then compete with each
free-position. Fourthly, the system needed to stop working other via attractor dynamics in the move network until one
on goals that had already been achieved. We implemented wins and the move network converges. Without other
this knowledge in production rules that tested the current sources of input, the move that is selected is random and
location of a ball and rejected goals to move that ball to its simply depends on noise. Once a move is selected, the
current location. representation of the current state is updated to reflect the

4In addition to these four types of knowledge, the system move. The new current state then once again votes for
also required the ability to update the current state after legal moves and the process begins again. In short, in the
each move. We assume this ability depends on vision (at absence of input from goals and subgoals, the model
least when moves are physically made rather than just simply performs random search using any legal moves.
imagined) which we did not wish to model. Instead, we The goal and subgoal networks modulate processing in
simply included a (rather complicated) set of productions the move network by exciting moves that achieve the
that tested the current move and updated the current state current (sub)goal and by inhibiting moves that do not. This
appropriately. modulation biases the competition in the move network so

Of course, our goal was not to develop a production that moves that achieve (sub)goals tend to be selected. If
system model, but rather to develop a neural network
model with which we could explore neural mechanisms of

4We do not model updates to the current state using neural networks. Ascontrol and the effects of damage. Our next step was
previously discussed, we assume this computation is performed bytherefore to exploit the mapping from production systems
complex visual processing (at least when moves are physically made) and

onto neural networks in order to construct an attractor we are not trying to model the details of this process. We therefore simply
network model for the task. wrote Matlab code that updates the current state networks whenever the

Recall that according to the mapping, attributes corre- move network converges on a move.
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Fig. 5. Schematic of the model showing the modular attractor networks that represent current goals, subgoals, moves and current states. Move and goal
representations are conjunctions of ball colors and target positions (e.g. ‘move red to position5’). A current state consists of a set of perceptual features
specifying the colors of the balls in each gameboard position and the status of each ball in terms of whether it can be moved or whether it is blocked.
Finally, the top row of networks represents the color of the ball occupying the target position of the current goal, the color of the ball above the goal ball’s
current position, and the lowest position on the peg which is neither the source nor the target of the current goal (a peg which is ideal for holding blocking
balls).

no legal move can achieve the current (sub)goal, then no Furthermore, the mean number of moves is never more
move is selected because the current (sub)goal inhibits all than two over the minimum possible (and the median is
moves that do not achieve it. In that case, the move
network converges to no move, above-source, in-target,
and free-position are updated, and they vote for a new
subgoal to remove an obstructing ball.

5 .1. Simulation [1: modeling normal performance

Fig. 6 presents data we collected from 42 undergraduate
students as well as the behavior of the model on 18 TOL
problems of varying difficulty. The human data were
collected using the methods (and software) described in
Owen et al. [36] and we also used the same 18 problems.
The figure plots number of moves as a function of
minimum number of moves (a measure of problem com-
plexity). Thus, optimal performance corresponds to the
diagonal line in which the number of moves equals the
minimum possible number of moves.

Two phenomena are strikingly apparent in the human
data. First and foremost, intact participants are exceedingly
good at the task. For problems involving fewer than five Fig. 6. Optimal performance, average human performance, and intact
moves, performance is almost optimal with the mean model performance across 18 Tower of London problems from Owen et
number of moves very close to the minimum possible. al. [36].
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always less than one move over minimum, not shown). characteristics is the subgoal network. Unlike the current
Clearly, these participants can solve these problems and state and move representations, the subgoal network is
can do so relatively efficiently. Secondly, there is a clear involved in top-down control rather than perceptual or
effect of complexity on the number of extraneous moves. motor processing. And unlike the goal network, the
The vast majority of extraneous moves occur on the subgoal network represents internally generated control
problems requiring five or more moves; for simpler signals rather than externally provided ones (like afford-
problems there are very few extraneous moves. This ances and many prepotent behaviors). We therefore chose
pattern of results is consistent with previous findings in the to simulate prefrontal impairments by damaging the subgo-
literature [30,36,49]. al network in the model. We did so simply by removing a

As the figure illustrates, the model also exhibits both of random sample of units from the subgoal network (includ-
these behavioral patterns. Most importantly, the model is ing the connections to and from those units).
capable of solving all the problems relatively efficiently.
To our knowledge, no neural network model has ever 5 .2.1. Group3difficulty interaction
solved the hardest problems with this level of efficiency. Fig. 7 presents the performance of intact participants,
Also, like the human data, the model’s efficiency is prefrontal patients, and the model with varying amounts of
affected by the complexity of the problem. On simpler damage to the subgoal network. On the left are data from
problems involving five or fewer moves, the model’s Owen et al. [36] and in the middle are data from Carlin et
behavior is essentially optimal. It only begins to make al. [8]. In both cases prefrontal patients perform worse than
extraneous moves on the most complex problems involv- the control participants do, but this difference is really only
ing six or more moves. apparent on the harder problems. That is, there is a clear

group (patients vs. controls) by difficulty (easy vs. hard)
5 .2. Simulations [2 and [3: modeling prefrontal interaction. Consistent with these behavioral results, neuro-
deficits imaging studies confirm that prefrontal cortex activity is

greater on more complex problems [2,37].
Before we can simulate the effects of prefrontal lesions, The model exhibits a similar pattern of behavior. With

we must decide which part of the model to damage. increasing amounts of damage the model’s performance
Prefrontal patients are often described as having a deficit in degrades, but this effect is much more apparent on the
top-down control. Their perceptual and motor systems may harder problems than on the easier problems (right side of
be relatively intact, but they have difficulty organizing figure). The reason the model produces this interaction
their behavior. They are often strongly influenced by (and therefore the explanation it provides) is that subgoals
affordances in the environment (e.g. as in utilization become increasingly important in the more complex
behavior) and have difficulty inhibiting behavior that is problems (for evidence consistent with this hypothesis, see
prepotent in the current context. They are easily distract- Refs. [19,43,49]). In particular, at most three moves on the
ible by information in the environment and thus have minimal solution path can achieve the final goals (because
difficulty focusing on internally generated information. there are only three balls). Therefore, other moves on that
The part of the model that most naturally matches these path must be based on internally generated plans/subgoals

Fig. 7. (A) Tower of London performance of patients with prefrontal damage and intact control participants from Owen et al. [36]. The figure shows the
number of moves above minimum and illustrates that prefrontal patients show larger impairments on harder problems than on easier problems (a
group3difficulty interaction). (B) Similar data from Carlin et al. [8] also demonstrating a group3difficulty interaction. (C) Performance of the neural
network model with varying amounts of damage to the subgoal network. Like the human data, damaging the model leads to disproportionate difficulty with
the hardest problems.
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rather than on externally provided constraints. For exam- 6 . General discussion
ple, an eight-move problem requires at least five such
moves whereas a three-move problem requires at most one. Our three main theoretical points can be summarized as

follows: firstly, there is a natural mapping from certain key
aspects of goal-driven production systems onto attractor

5 .2.2. Failure to inhibit prepotent responses neural networks. The mapping is directly supported by
We also tested the effect of damage on the ability of the properties of attractor networks that are both well under-

model to solve problems that require prepotent (goal- stood computationally and broadly consistent with what is
achieving) moves to be inhibited (this test was inspired by known about cortical processing. Secondly, this mapping
a similar simulation in Ref. [14]). Fig. 8 shows the results. makes it possible to develop neural models of complex
On the left of the figure is the model’s performance on a problem solving tasks such as the Tower of London. A key
problem in which the prepotent move is correct. Notice demonstration of the efficacy of this mapping is the ability
that damage had no effect in this case. The reason is that of the model to account for the problem solving behavior
behavior could be controlled by the intact goal network of normal subjects on a range of Tower of London tasks,
(which biases the system toward prepotent, goal-achieving including fairly challenging 6–8-step problems that were
moves). On the right of the figure is the model’s behavior solved reasonably well by both subjects and model.
on the same problem, but with the initial and goal states Thirdly, the mapping and the Tower of London model in
reversed. In this problem, however, there is a prepotent particular led to a hypothesis about the role of DLPFC in
move that is actually incorrect (that is, it is not on the problem solving: DLPFC supports the representation of
minimal solution path). In this case, increasing amounts of internally generated subgoals that modulate among
damage lead to increasingly severe impairments in per- choices. This is a novel hypothesis that has not been
formance. The model therefore predicts an interaction directly tested empirically, but the correspondence of the
between problem type (prepotent correct vs. incorrect) and damaged model’s behavior with that of frontal patients
subject group (controls vs. prefrontal patients). suggests that the hypothesis is a viable one, at least in this

The success of the damaged model to simulate the task domain.
behavior of prefrontal patients on the Tower of London
task leads to the hypothesis that the role of DLPFC in 6 .1. Relationship to other work
these kinds of tasks is to represent internally-generated
subgoals that bias competition among options. Dehaene and Changeux [14] (henceforth DC97) also

Fig. 8. The effects of damage on the model’s ability to inhibit prepotent moves that are incorrect. The figure shows the number of moves made by the
model under different amounts of damage for two different problems. The two problems involve the same moves, but in reverse order (the initial and goal
states have been reversed). For the problem on the left (prepotent correct), all moves that would place balls in their final positions are correct (are on a
minimal solution path). For the problem on the right (prepotent incorrect), a suboptimal move is available which would achieve a goal, but which would
have to be undone in order to achieve a solution. Damage to the model leads to disproportionate difficulty with the problem on the right in which a
prepotent move must be inhibited.
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proposed a neural network model of the Tower of London, We hasten to add, however, that in other ways, the
and it is instructive to consider the relationship between DC97 model is both more comprehensive and more
their model and the attractor model described here. We complex than the model proposed here. It addresses
wish to focus on two distinguishing features of the DC97 multiple levels of control, and includes mechanisms for
model. Firstly, it is comprised of a hierarchy of processing look-ahead and explicit state evaluation. These are im-
levels that correspond to plan, operation, and gesture portant functions not yet realized in our current model.
levels. (An operation is a single move in the problem The work presented here also builds on other computa-
composed of two gestures: pointing to the source and tional theories of prefrontal cortex function, most notably
destination location). Secondly, it is an architecture that the models of Cohen and co-workers [9,10,29]. Using
implements a simple greedy search algorithm with a look- models of tasks such as Stroop that directly pit automatic
ahead mechanism. At each point, if a move is available against controlled processes, they have argued persuasively
that puts a ball into a goal position, that move is selected; that an important computational function of prefrontal
else one is chosen randomly. If a chosen move turns out to cortex is the modulation of competing posterior representa-
increase the number of balls in a goal position, the current tions by explicit representations of current task goals. The
problem state is deliberately stored so that it may be model proposed here is entirely in this spirit, and it begins
returned to. If a move turns out to decrease the number of to demonstrate that modulating attractor networks can be
balls in a goal position, the path is abandoned by returning assembled in a way that scales to problem solving tasks
to a previously remembered state. that are more complex than has previously been attempted.

There are several important theoretical and empirical Furthermore, the precise way in which these networks are
differences between the DC97 model and the work de- assembled can be guided by independent work on cogni-
scribed in this paper. Firstly, the model described here tive architectures that already have a long history in
proposes that the generation and maintenance of subgoal modeling problem solving.
representations is a critical part of problem solving in tasks Although we have focused here on problem solving in
such as TOL, and furthermore ascribes this function of complex tasks, dorsolateral prefrontal cortex has been
subgoal representation to DLPFC. Secondly, the model is hypothesized to be involved in a wide variety of cognitive
based on a task-independent and problem solving method- functions, including attention [3,6,10,12,35], various work-
independent mapping of goal-driven production systems ing memory functions [17,18,26,39], coordination of multi-
onto attractor networks. Thirdly, the model makes accurate ple tasks [46], representation of task context [7,11],
predictions about the specific number of moves on in- voluntary action [38], goal management [19,29], inhibition
dividual problems, including relatively difficult problems of irrelevant or inappropriate responses [15], encoding of
involving up to eight moves. Fourthly, the model yields abstract rules [48], and others. It remains to be seen how
graded effects of damage, such that slight damage to the the proposed model will fit into a more comprehensive
subgoal network produces less of an effect than greater theory that accounts for this multiplicity of prefrontal
damage. functions and possible functional specialization within

This comparison brings into focus an important point: prefrontal cortex. One common thread that seems to run
the empirical success of the current model—in particular, through many of these functions, however, is that PFC
its ability to handle difficult problems in the same number represents behavioral intentions that persist and guide
of steps as subjects—is a direct function of the model’s processing for stretches of time on the order of several
support for both subgoal representations and knowledge- seconds to tens of seconds. A number of researchers have
intensive problem solving methods. One way to character- argued for this kind of unifying principle (e.g. Refs.
ize the model is that it provides an architecture for [29,38]), and it is wholly consistent with the model
implementing subgoal-mediated problem solving methods. presented here. What we hope to do with the current work
The method is represented by specific associations (corre- is begin to push models based on this idea in the direction
sponding to productions) that encode knowledge about of flexible, programmable neural network architectures that
what subgoals to set and what operations to pursue to can be applied to tasks of greater and greater complexity.
accomplish those subgoals. Again, this is in contrast to the
DC97 model, which can be seen as a task-independent but
method-specific architecture for implementing greedy R eferences
lookahead.
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