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a b s t r a c t

Optimal performance and physically plausible mechanisms for achieving it have been completely
characterized for a general class of two-alternative, free response decisionmaking tasks, and data suggest
that humans can implement the optimal procedure. The situation is more complicated when the number
of alternatives is greater than two and subjects are free to respond at any time, partly due to the fact
that there is no generally applicable statistical test for deciding optimally in such cases. However, here,
too, analytical approximations to optimality that are physically and psychologically plausible have been
analyzed. These analyses leave open questions that have begun to be addressed: (1) How are near-optimal
model parameterizations learned from experience? (2) What if a continuum of decision alternatives
exists? (3) How can neurons’ broad tuning curves be incorporated into an optimal-performance theory?
We present a possible answer to all of these questions in the form of an extremely simple, reward-
modulated Hebbian learning rule by which a neural network learns to approximate the multihypothesis
sequential probability ratio test.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In this work, we examine the problem of maximizing earnings
from a sequence of N-alternative decisions about the identity
of noisy stimuli, with N ≥ 2. Our goal is to parameterize a
simple neural circuit model whose behavior approximates optimal
performance in such tasks, while simultaneously accounting for
the fundamental role of tuning curves in the neural representation
of sensory stimuli. Throughout, we take ‘optimal’ to mean reward
maximizing, andwe assume that correct decisions earn rewards for
the decider. We also assume that rewards are maximized while
subject to constraints of biological plausibility and computational
tractability, which we take to be satisfied by stochastic neural
networks whose size grows linearly with the number of decisions
to be made.

As we show, simple principles of neural computation are
sufficient to approximate this form of optimality in a class of
N-choice tasks involving response-terminated stimuli: that is,
stimuli that provide information continuously until the time (the
response time) at which task participants decide for themselves
when to stop observing and make a response. This is somewhat
surprising, given that a general decision policy that guarantees
truly optimal performance cannot even be explicitly formulated
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for such tasks, as we discuss below (Dragalin, Tartakovsky, &
Veeravalli, 1999).

In the simple decision making tasks we consider, we assume
that participants earn rewards for correct responses (correct stim-
ulus identifications), and earn less for errors (for simplicity, we
assume that errors earn nothing). Rewards may be explicitly pro-
vided by the experimenter, or else we may assume that partici-
pants arbitrarily assign some measures of personal satisfaction to
correct responses that are not determined by the experimenter.
Each stimulus type has a fixed prior probability within a block
of trials, and the average signal-to-noise ratio of each stimulus is
fixed. The block duration, rather than the number of trials, is also
held fixed, and the distribution of response-to-stimulus intervals
(RSIs) that delay the onset of the next stimulus after a response is
stationary. In this case, maximizing the rate of reward also maxi-
mizes the total reward.

Maximizing gains in this and a variety of similar tasks
requires probabilistic inference. While the importance of a
principled inference process is widely understood in psychology
and neuroscience (Knill & Pouget, 2004), the complexity of
optimal decision policies in tasks with response-terminated
stimuli (also known as ‘free response’ or ‘response time’ tasks)
and N > 2 choices appears to be less well appreciated. In addition,
the relationship between neural representations and decision
variables takes on a new level of complexity when N > 2. In the
N = 2 case, tuning curve width is irrelevant if one makes the
simplifying assumption that the decision making system consists
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of a neuron tuned for one type of stimulus and an ‘anti-neuron’
tuned with the same sensitivity to the opposite stimulus (Gold &
Shadlen, 2001). In contrast,whenN > 2, thewidth of neural tuning
curves has a large impact on the overall performance of a decision
maker (McMillen & Behseta, 2010).

Tuning curves are ubiquitous in neural responses to stimuli
(see, e.g., Butts and Goldman (2006)). The relationship between
tuning curve shape and decision making performance has intri-
gued researchers for many years (cf. Pouget, Deneve, Ducom, &
Latham, 1999). Naively, one may suppose that task participants
improve their performance by sharpening the tuning curves of
the neurons involved. However, wider tuning curves are in some
cases more efficient in conveying information, and the most
informative tuning curve shape depends strongly on the noise
distribution in the neurons involved in a particular task (Seriés,
Latham, & Pouget, 2004; Zhang & Sejnowski, 1999). Moreover, in
several tasks a participant may improve his performance without
significantly altering the shapes of the tuning curves in the neurons
involved. For instance, in an orientation discrimination task,
monkeys are able to learn to discriminate between finer angles
over time, while the tuning curves in primary sensory cortex
are altered very little (Ghose, Yang, & Maunsell, 2002; Law &
Gold, 2008). This suggests that improvements in performancemay
take place in a learning process downstream from the sensory
neurons. (However, see Pilly, Grossberg, and Seitz (2010) for a
recent discussion of this issue.)

In this paper we explore the ways in which a participant may
improve performance in decision tasks, given tuning curve shapes
in sensory neurons. We do not consider the alteration of receptor
units’ tuning curves, but rather how the information in tuning
curves can be utilized more efficiently over the course of many
trials. In particular, we are interested in how well participants
can do in tasks in which they exhibit a speed-accuracy tradeoff
(SAT). Generally, in such tasks, spending more time deciding leads
to fewer errors, but at the expense of making fewer decisions
per allotted time. With stationary task parameters, the optimal
strategy is the one that results in the most correct decisions per
unit time: i.e. the one that maximizes the reward rate. For a task
in which the time to respond is fixed by the experimenter, this
amounts to a strategy that chooses the most likely hypothesis. For
tasks in which the participant is free to decide at any time, the
participant must set his or her own criteria for deciding. We refer
to these two types of experimental protocols as the interrogation
and free response protocols, respectively.

Here we are mainly interested in the free response protocol.
In the case where the participant is free to respond at any time,
and the next trial begins a time D after a response, called the
response–stimulus interval (RSI), the reward rate (RR) is defined in
terms of the error proportion (ER) and mean reaction time (MRT):

RR =
1 − ER

D + MRT
. (1)

The optimal SAT depends on the RSI D (cf. Bogacz, Brown, Moehlis,
Holmes, & Cohen, 2006). This may be seen by noting that if D is
zero, then the best strategy is to decide as quickly as possible, since
even if the ER is what would be achieved by random guessing, the
MRT will be small, and the RR will be large. Conversely, if D is
very large, one should take one’s time to ensure a small probability
of error, since there will be few chances for reward in any finite
amount of time. Between these two extremes of low accuracy
(small MRT) and high accuracy (large MRT) is a range of SATs
that are optimal for different values of D. The best procedure, in
terms of optimizing RR over the whole range of possible D’s, is the
one that minimizes the MRT for a given ER. Human participants
show evidence of being able to implement this procedure in the
case of two-alternative tasks (Bogacz, Wagenmakers, Forstmann,
& Nieuwenhuis, 2010; Simen et al., 2009). In this paper, we discuss
the difficulties inherent in implementing the truly optimal test
in the case of more than two alternatives (Brown, Steyvers, &
Wagenmakers, 2009), but show how such a test can nevertheless
be approximated in a neural network that applies fixed response
thresholds to accumulated evidence. The question of where to set
those decision thresholds in order to achieve the optimal ER value
for a given D is left for future work. In the Discussion, however, we
note that it may be possible to generalize an existing procedure for
threshold optimization in 2-choice tasks to the case of N > 2.

The canonical perceptual decision making task that we will use
to illustrate the proposed learning algorithm involves classifying
the direction of motion of a visual stimulus into one of several
categories. In this task, a participant observes a collection of
moving dots on a screen. A certain proportion of them are moving
in one of N directions, while the rest are moving randomly. The
observer must then determine the direction of motion of the
coherently moving dots. In a typical experiment with monkeys
as participants, the animal indicates the direction of movement
by moving its eyes to a choice target. (See Churchland, Kiani, and
Shadlen (2008) and Law and Gold (2008) for recent results in such
tasks, and also Niwa and Ditterich (2008) for results in similar
tasks using human participants.) The difficulty of this task depends
essentially on three factors: (1) the proportion of dots that are
moving coherently (the signal-to-noise ratio), (2) the number of
possible directions of coordinated movement, and (3) the distance
between these alternatives. (With the interrogation protocol, the
duration of the stimulus presentation is also a critical factor, with
shorter viewing times creating greater difficulty.)

The remainder of this paper is organized as follows. In the
following section we describe a network for decision making
for the above task. It consists of three layers: an input signal
layer, a layer of leaky, competing accumulators (LCA’s), and a
response output layer. The main result of this paper is a learning
algorithm for the weights between the layer of accumulators and
the response layer. McMillen and Behseta (2010) showed that
overlapping of signals corresponding to different alternatives can
be an advantage if the resulting output of the accumulators is
multiplied by a matrix that encodes the possible alternatives.
This matrix multiplication is achieved by tuning the weights from
the accumulator layer to the decision layer so that the vector of
weights to each decision unit has the same shape as the vector of
signals corresponding to that decision. In Section 3 we describe
a simple Hebbian learning rule that performs remarkably well at
learning the weights corresponding to near-optimal performance
as described in McMillen and Behseta (2010), and we demonstrate
analytically why the average weights must converge to them. In
Section 4 we present numerical simulations of the blocks of trials
involving four alternatives. We see how performance improves
over the course of trials, and how the weights corresponding to
near-optimal performance are learned for a variety of different
shapes for sensory tuning curves. Finally, we conclude in Section 5
with a few remarks and a discussion of how the algorithm we
propose can be adapted to situations in which the delay between
trials is changing. In this section we also discuss how our work
relates to current research trends.

2. The three layer MT-LIP-SC model for decision making

2.1. Overview of the three layers

We propose a three layer neural model for decision making
(defined in Table 1, and depicted in Fig. 1). The first layer acts
simply as a simple, sensory detector with a preferred motion
orientation; the next layer integrates the information from the first
layer, but also exhibits competitive dynamics that gradually build
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Fig. 1. Neural network model with 4 accumulators and 3 alternatives. The weight
matrixW denotes the weights of the connections between the xi ’s and zj ’s. Arrows
represent excitatory connections and circles represent inhibitory connections.

a commitment to one course of action over the alternatives; the
last layer triggers a discrete motor response when commitment
to one response is sufficiently strong. For convenience, we refer to
these three layers, respectively, as the MT, LIP and SC layers. These
labels reflect the fact that our model exhibits known properties
of neurons in the monkey middle temporal area (MT), the lateral
intraparietal (LIP) and the superior colliculus (SC) in decision
making tasks requiring eye movements in response to visual
motion (Rorie, Gao, McClelland, & Newsome, 2010; Shadlen &
Newsome, 2001). (See also Grossberg and Pilly (2008) for a recent
discussion of the roles of various parts of the brain in decision
making.) The architecture of this circuitry is expected to apply
without major modification to other stimulus and response types,
however.

We suppose that MT neurons have tuning curves that are
preferentially sensitive to a single, given direction of visualmotion,
and that another layer is stimulated by the activity in this input
layer. In this paper we suppose that the tuning curves of the MT
neurons do not vary over successive trials. Asmentioned above, the
tuning curves of sensory neurons may not change much, if at all,
over the course of many trials, while performance improves. Here
we are interested in how a subject improves performance without
any changes to the tuning curves of the sensory neurons. By virtue
of their excitatory connections to LIP, model MT units’ tuning
curves and their excitatory feedforward connections to LIP in turn
define tuning curves for LIP units. Questions of major importance
in computational neuroscience are: Through what sort of learning
process do these tuning curves arise? Can we define an optimal
connection scheme thatmaximizes some function, such as the rate
of reward earned by the model? We attempt to make progress
on these questions while making the simplifying assumptions that
the brain circuits in question are approximately linear systems (at
least over a limited range of inputs), and that they employ simple
learning schemes (such as Hebbian learning, or error-updating
rules such as the Widrow–Hoff, Rescorla–Wagner or delta rules).

Recent work (e.g. McMillen and Holmes (2006) and Bogacz and
Gurney (2007)) that avoids discussion of tuning curves shows that
under these assumptions a simple neural network can perform
approximately optimal hypothesis testing. We now demonstrate
that a model consistent with these assumptions does remarkably
well at approaching optimal (reward-maximizing) performance
in decision making tasks with multiple alternatives. The model’s
layers are representedmathematically by S, x, and z. Fig. 1 shows a
diagram of the model. Notice that, since we take the tuning curves
of the MT as given, we do not need to represent the responses of
these neurons individually, but only their actions as signals to the
LIP layer. Thus, the units in the MT layer represent not necessarily
individual MT neurons, but the total weighted sum of signals to a
unit in the LIP layer.

Upon presentation of a stimulus,MTneurons present a vector of
signals to accumulators in the LIP layer. The signal presented to the
Fig. 2. Possible directions of coherent motion (left panels) and corresponding
signal vectors (right panel).

LIP layer is referred to as Si, representing the total weighted sum
of MT signals to the ith accumulator. Each stimulus corresponds to
a unique signal, so that the set of signals to the LIP layer may be
represented as a vector indexed by µ:

Sµ
=

Sµ

1 , Sµ

2 , . . . , Sµ
n


. (2)

The task is to determine which of N possible decision alternatives
corresponds to this signal vector. Notice that the size of the signal
vector can be greater than the number of decision alternatives,
i.e. in general n > N .

Although it is not required, wewill generally take the Sµ signals
to be Gaussian:

Sµ

i = a exp
[
−

(i − dirµ)2

2φ2

]
, i = 1, . . . , n. (3)

Here dirµ is the peak of the signal, a is the height of the peak, and
φ is the width of the curve. Notice that if φ = 0, then

Sµ

i = a δi,dirµ , (4)

where δi,j is the Kronecker delta (i.e., 1 if i = j, 0 if i ≠ j), so that
the signal is concentrated in the channel dirµ. But, if φ > 0, the
signalwill have a spread around the peak. Tuning curves associated
with the dots motion task have been measured to have a width of
about 40° (Law & Gold, 2008). The situation is illustrated in Fig. 2.
Directions far apart have very little overlap in the signals, butwhen
the directions are close the overlap is substantial. For the two-
alternative case in which dots travel either up or down, the signals
have very little overlap. Signals for alternatives corresponding to
more similar motion directions have more overlap.

We model the LIP layer as a set of n leaky competing
accumulators. The linearized model for their evolution is a
stochastic differential equation (Bogacz et al., 2006; McMillen &
Holmes, 2006; Usher & McClelland, 2001):

dxi =


−kxi − m

−
j≠i

xj + Si


dt + c dWi, i = 1, . . . , n, (5)

where k is the decay rate, m is the mutual inhibition, and Wi is a
Wiener process (white noise) representing the noise in the signal
and from other sources. The noise seen by the accumulators is
assumed here to be uncorrelated. That is, the Wiener processes
Wi are independent. The signal-to-noise ratio is the ratio of the
magnitude of the largest signal to the standard deviation of
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Fig. 3. Effects of signal spread and weight shape. Left panel: MRT vs. spread in the signal vectors, where the weights have the same shape. Right panel: MRT vs. spread in
shape of weights with signal vector fixed with φ = 4. In all cases the threshold is such that ER = 0.1.
the noise, i.e. a/c . We can thus model changes in the direction
coherence by changing this ratio. The effect of decay and inhibition
is to concentrate the values of the accumulators onto the signal
vectors. Thus, moderate values of m and k tend to increase the
accuracy. Best results are achieved when decay and inhibition are
balanced, i.e.m = k (McMillen&Holmes, 2006). For simplicity, and
to be concrete, throughout the rest of this paper we will present
results for k = m = 0.5, a = 2 and c = 1. Results are qualitatively
insensitive to these choices.

The output from accumulator j is fed into the ith unit of SC with
weight wij. Thus, the SC units are given by

zi = f (yi) , yi =

n−
j=1

wijxj. (6)

That is, yi is a weighted sum of the accumulators, and the values
zi of the SC units are obtained by passing these weighted sums
through a function f (x). A decision is made once one of the zi’s
saturates, or crosses a threshold. We suppose that the functions
f (x) are step functions, so that a response is made when SC unit
j transitions from 0 to 1 (i.e., when yj =

∑n
j=1 wijxj > θ ). A

method for implementing approximate step functions in bistable
neural network units with sigmoidal activation functions and
strong recurrent feedback is discussed in Simen and Cohen (2009).

The results in this paper are generally applicable, but to be
precise, unless stated otherwise, we consider a motion direction
task with 36 accumulators and interpret these as representing
increments of 10°. If the direction j · 10◦ is presented, the signal
vector takes the shape Sµ

i as in (3), with dirµ = j. For concreteness
we consider four possible directions of motion: 30°, 60°, 140°,
220°. Thus, if, say, the direction of coordinated movement is 60°,
the signal vector has a peak at the sixth accumulator. The four
possibilities are represented by the four possible signal vectors
with peaks at accumulators 3, 6, 14 and 22. In this paper we only
consider the case when all the possibilities are equally likely, in
which case the appropriate initial condition for the accumulators
is xi(0) = 0.

2.2. Optimality and weights

McMillen and Behseta (2010) showed that approximately
optimal performance is achieved when the weights mimic the
shape of the possible incoming signal vectors. That is to say, a
threshold crossing test best approximates the optimal test when
wij ∝ Sµi

j . The magnitude of the weights are not important in
terms of optimality, as the magnitude may be incorporated into
the thresholds.

For two alternatives the sequential probability ratio test (SPRT)
minimizes reaction times among all tests making a decision
with a given error rate, and hence optimizes reward rate (Wald
& Wolfowitz, 1948). For more than 2 alternatives, there is no
single optimal test in the sense the SPRT is optimal. However,
the multihypothesis sequential probability ratio test (MSPRT) is
an asymptotically optimal test that achieves the smallest MRT
among all tests for a given ER, in the limit as the ER approaches
zero (Dragalin et al., 1999). In the context of the three layer model
presented here, the asymptotically optimal test is the one in which
the weights wij ∝ Sµi

j , and a decision in favor of hypothesis i is
made when the quantity

yi − max
i≠j

yj (7)

crosses a threshold. For this reason, the asymptotically optimal test
is referred to as the max-vs-next test. A related, but sub-optimal,
test is the max-vs-average test, which chooses hypothesis i when
the quantity

yi −
1

N − 1

−
j≠i

yj (8)

crosses a threshold. The max-vs-average test may be described by
the somewhat cumbersome term,‘‘nearly asymptotically optimal’’.
That is, it is nearly as good as the asymptotically optimal test. The
advantage of the mutual inhibition term in (5) is that a simple
threshold crossing test (i.e. choose i when zi crosses a threshold)
achieves results indistinguishable from a max-vs-average test
when the inhibition term is ofmoderate size. For a fuller discussion
of the relationship between these sub-optimal tests, we refer the
reader to McMillen and Holmes (2006).

In this paper we consider only the simple threshold crossing
tests, which approximate the sub-optimal max-vs-average test.
This restriction is made since, (a) it is simple to implement (it
requires only a consideration of theweighted accumulator values),
and (b) here we are mainly interested in how a network may
learn to approximate optimality. For this reason, for the remainder
of this paper, we will use the term ‘‘optimal’’ in the sense that
the three layer network with a simple threshold crossing test
can achieve the best possible reward rate. Thus, we consider a
constrained optimality problem.

The performance of the threshold crossing tests is illustrated
in Fig. 3. Here we consider a test with 36 accumulators and the
four alternatives as described above. In Fig. 3 we plot the MRT
for a fixed value of the ER (ER = 0.1). For each value of the
spread we compute the threshold such that ER = 0.1, and find the
correspondingMRT. Each panel demonstrates an important fact, as
we elucidate below.

In the left panel of Fig. 3 we take the signal vectors to be as
in (3), and allow φ to vary. Thus, φ = 0 corresponds to the case
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when the signal is concentrated in a single channel. Positive values
of φ correspond to signals that are spread about a peak. In these
computations, the weights are the optimal weights, i.e. wij ∝ Sµi

j .
This panel thus shows the minimal MRT that can be achieved by
a threshold crossing test for an ER of 0.1. We see that there is an
advantage to a moderate spread in the signals if this information
can be utilized by the decision mechanism. In fact, the minimal
MRT occurs when the spread is near φ = 3. It is interesting to note
that this corresponds to a width in the shape of the signal vectors
of about 30°, while the width of tuning curves in MT associated
with the direction task as measured in Law and Gold (2008) is
approximately 40°.

In the right panel we fix the spread in the signal vectors at φ =

4, and compute MRT for various spreads in the weights. In order to
get an idea of how the spread in the shape of the weights affects
performance when the signal shape is fixed, in these simulations
we suppose that the weights also have a Gaussian shape:

wij = w0 exp
[
−

(i − j)2

2φ2
W

]
, j = 1, . . . , n, (9)

where w0 is a normalizing factor chosen so that
∑n

j=1 w2
ij = 1.

The spread φW controls how the values of the accumulators are
weighted before making a decision. A value φW = φ corresponds
to the optimal weights. In the case φW = 0, we have yi = xi, so
that the accumulator values are not weighted. When φW = ∞,
each yi is the same, i.e. the sum of all accumulators. The right panel
of Fig. 3 shows that MRT is minimized when φW = φ. That is,
the best results are achieved when the weights are the optimal
weights. In this figure both the signal vector and theweight vectors
have Gaussian shapes. MRT is minimized (and hence the reward
rate is maximized) when the widths of both are the same.We have
performed a number of simulations comparing results for various
shapes of the signal and weight vector, and have found in all cases
that the MRT is minimized when the shape of the weight vector
is the same as the signal vector. See McMillen and Behseta (2010)
for a detailed discussion. For this reason, we will refer to weights
that have the same shape as the possible signal vectors as optimal
weights, keeping in mind that these are the weights that solve the
constrained optimality problem we have described.

To reiterate, a moderate spread in the signals is a significant
advantage, but only if the LIP-to-SC weights can be tuned to the
MSPRT-implementingweights, that is, to take on the same shape as
the possible signal vectors defined by MT activity. In the following
section we consider how the weights may be modified over the
course of trials.

3. An algorithm for learning the LIP-to-SC weights

We propose a simple Hebbian weight learning algorithm for
the weights wij. The learning algorithm is a modification of the
classical Widrow–Hoff rule. The theory of this update rule is
described, e.g. in Hertz, Krogh, and Palmer (1991). In rules of this
type, the connection strength being modified acts as a filter that
tracks an input signal. At any point, its value is an exponentially
decaying, time average of past input values. High frequency
changes in this signal (representing noise) are filtered out by
the algorithm, producing little change in the updated weight. In
contrast, low frequency signal changes (representing, hopefully,
the uncorrupted input signal) produce significant changes in the
weight. If the signal is constant and noise is absent, the weight will
converge exponentially on the value of the signal. If what is being
tracked is a signal that depends on the product of activations in a
sending unit and a receiving unit, then this rule is simply a Hebbian
update rulewith a decay term for forgetting old co-activation levels
— a useful feature in a noisy neural system.

After each trial the participant responds with a choice among
alternatives, say i. At this time the weights to the output unit
zi corresponding to the choice made are updated, according
to whether a reward is received or not. Then, if the choice
corresponding to zi is chosen, the weights are updated by the rule

wnew
ij = (1 − α)wold

ij + α ∆wij, (10)

∆wij = rzixj, (11)
where r is the magnitude of the reward, and α is the learning
rate. Notice that only the weights to the unit corresponding to the
choice made are updated, and this is the sense in which the rule
is Hebbian. In this discrete algorithm, we suppose that a reward
is either earned or not so that r is either 1 or 0 depending on
whether a correct decision ismade. This rule can easily bemodified
to take into account a probability of receiving a reward for a correct
response, but we do not consider such modifications here. After
each trial, the weights are normalized so that

n−
j=1

w2
ij = w0. (12)

We usually take w0 = 1. The normalization (12) is thought to be
a common feature of synaptic plasticity (Royer & Pare, 2003). Note
that this normalizationmeans that if an incorrect decision is made,
then the weights are unchanged, since then ∆wij = 0, and the
normalization will cancel the multiplication by 1 − α.

Thus, after each trial, if a correct decision is made the weights
to the correct output unit are increased in proportion to the
values of the accumulators x. There is no need to estimate the
probability ofmaking a correct decision or an expected value of the
reward, as in reinforcement learning methods based on prediction
errors (e.g., Law & Gold, 2009), since only the values of the units
are used in the update rule. With this rule the weights track the
shape of the vectors being passed from the LIP layer. The weights
thus tend to oscillate around the means of the accumulator values,
⟨xj(t)⟩.

We now prove that the accumulator values on average take on
the shape of the signal vector from the MT layer. The first step is to
write Eq. (5) as

dxi =


λ xi − m

n−
j=1

xj + Si


dt + c dWi, i = 1, . . . , n, (13)

where λ = m − k is the difference between inhibition and decay.
Since the mean of the Ito integral

 t
0 dWi(τ )dτ vanishes (Gardiner,

2004), the mean value of the accumulators obey the ordinary
Table 1
Three layer model with weight learning rule. Numbers at left refer to equations in the text.

Si, i = 1, . . . , n Given signals from MT

(5) dxi =


−k xi − m

∑
j≠i xj + Si


dt + c dWi Accumulator evolution in LIP

(6) zi = f (yi), yi =
∑n

j=1 wijxj Decision units in SC

(10) wnew
ij = (1 − α)wold

ij + α ∆wij LIP-to-SC weight learning rule
(11) ∆wij = rzixj

(12)
∑n

j=1 w2
ij = w0 Weight normalization
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differential equation

d
dt

⟨xi(t)⟩ = λ ⟨xi(t)⟩ − m


n−

j=1

xj(t)


+ Si. (14)

We calculate the mean of the sum of the accumulators as follows
by summing the Eq. (5) to deduce that the increment of the sum of
the accumulators is

d


n−

j=1

xj


=


−(k + (n − 1)m)

n−
j=1

xj +
n−

j=1

Sj


dt

+ c
n−

j=1

dWj. (15)

Since the sum ofWiener processes has mean zero, the mean of the
sum obeys the ordinary differential equation

d
dt


n−

j=1

xi


= −λ̂


n−

j=1

xj


+

n−
j=1

Sj, (16)

where λ̂ = k + (n − 1)m. Therefore,
n−

j=1

xj(t)


=

n−
j=1

Sj
1 − e−λ̂t

λ̂
. (17)

Substituting the above expression into (14), we obtain an ordinary
differential equation for ⟨xi(t)⟩. Solving this, we obtain

⟨xi(t)⟩ =


Si −

1
n

n−
j=1

Sj


eλt

− 1
λ

+
1
n

n−
j=1

Sj
1 − e−λ̂t

λ̂
. (18)

Notice, now, that the mean of xi(t) has the form

⟨xi(t)⟩ =


Si −

1
n

n−
j=1

Sj


c1(t) + c2(t), (19)

where c1 and c2 are functions of t , but they do not depend on i.
Notice that c1 and c2 are strictly increasing functions of t . Thus the
mean of the vector of accumulators tends toward the shape of the
vector of signals fromMT, amplified by the function c1(t). Thus, the
accumulators tend to sharpen around a peak corresponding to the
largest signal. The behavior of the means of the accumulators and
the role of inhibition may be better understood by considering the
case in which decay is nearly balanced with inhibition, i.e. k ≈ m.
Then λ ≈ 0 and λ̂ ≈ nm, and from (18), the means of the
accumulators are

⟨xi(t)⟩ ≈



Si −

1
n

n−
j=1

Sj


t if m ≫ 0

Si t if m ≈ 0.

(20)

The effect of inhibition may be clearly seen from the above.
With no inhibition, the accumulators evolve independently, simply
amplified over time. When inhibition is present, those accumula-
tors corresponding to signals that are less than the average trend
negatively, and the difference between the largest and smallest
accumulator is thus amplified. It is worth noting that lateral inhi-
bition causes the accumulators to be non-independent stochastic
processes. This does not affect the network’s approximation of the
MSPRT, however; see McMillen and Behseta (2010) and McMillen
and Holmes (2006).

The update rule (10)–(11) causes the weights to track the
normalized mean values of the accumulators and thus causes the
weights to track values whose means take on the shape of the
MT-to-LIP signal vectors. In the extreme cases of (20) where λ̂
is either large or small, the weights will thus tend to either
Si − 1
n

∑n
j=1 Sj or Si, both of which obviously have the same shape

as the signal vector. Notice that over time, due to the amplification
by c1(t), the vector of accumulators will generally become scaled
up versions of the vector of signals. This scaling up is a sharpening
in the sense that the ratio of the height of the integrated signal
to the variance of the noise becomes larger over time. However,
this is not a sharpening in the sense in which a probability density
sharpens by increasing its peakwhile integrating to one. In general,
as we demonstrate in simulations below, the weights track these
scaled up versions of the signal vector. The degree of the scaling
depends on the time of integration, theMRT on average. That is, the
weights tend, on average, to mimic the shape of the signal vector
with oscillations about this shape that depend on the learning rate.

Fig. 4 shows the dynamics of evidence accumulation within
trials, demonstrating that Gaussian bumps of activation arise on
the LIP layer (preserving the Gaussian input signal profiles, and
therefore producing Gaussian LIP-to-SC weights through Hebbian
learning; see panel A). The bottom of panel A shows how the
weighted LIP activations (black asterisks) approach or recede
from the thresholds (red asterisks) implemented by each of
three SC units. Panel B demonstrates that the weighted sum of
LIP activations in favor of choice 2 (blue solid) increases more
rapidly on average than the most sensitive LIP unit alone (blue
dashed). This occurswithout any appreciable increase in noise, and
therefore results in better performance than basing decisions on
evidence from a single LIP unit alone. In panel C, the same situation
occurs, but a threshold is now applied to the evidence in order to
produce a decision. Red and blue traces fall off over time because
the average is based on fewer and fewer trials as time progresses
(more and more decisions have already taken place by the end of
the plot).

4. Results of simulations

Fig. 5 shows results of simulations using the update rule
(10)–(11) in the free response protocol. The weights are initially
chosen randomly, with a peak added at wii. We see how the
weights evolve over time, and how this affects the performance
of the participant. The reward rate continually increases on
average, and the ER continually decreases. The bottom panels
show the weights to SC corresponding to i = 14, or to angle
140°. The weights for the other alternatives behave similarly.
Simulations in which the weights are chosen differently show
similar improvements in performance and similar matching of
the weight profiles to the signal vector shapes. Cases in which
the weights are all chosen randomly show a more dramatic
improvement in RR since then the accuracy will initially be very
low. Fig. 5 shows that even when the weight has a peak at the
right position, a dramatic improvement occurs: for example, the
RR more than doubles and the RT and ER both decrease over time.

Fig. 5 shows one block of 500 trials. In order to see how the
weight update rule behaves on average, we carried out the same
simulation for a number of blocks and then averaged the weights
over trials in each block, and then took the average over 150 blocks
of trials. The values of such averaged weights are seen in Fig. 6.
In this figure we show the averaged weights for different values
of the threshold, as well as different values of the spread in the
signals. We see that on average, the weight profile is close to the
signal shape. Also shown in these figures are the ERs and MRTs
for these blocks of trials. Notice that in the lower left panel, the
ER = 0.58 is not much smaller than would be achieved by random
guessing (0.75). In this case the threshold is very small, as is the
correspondingMRT of 0.09. In this situation it will take theweights
much longer to learn the shape of the signal vectors, since most
of the time the decision will be incorrect. This is why the weights
appearmore erratic in this frame than in the others. However, even
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A B

C

Fig. 4. Panel A, top, shows LIP unit activations at several time points within a decision. Activations are averaged over many instances of stimulus type 2, which produces
maximal activation in LIP unit 6 (motion direction 120°; here we arbitrarily quantized directions into 18 levels). Panel A, bottom, shows the weighted values of these
activations feeding into each of 3 SC units. Panel B shows the average state of weighted evidence accumulation over multiple trials for input to SC unit 2 (blue solid) and
average LIP unit 6 activity (blue dashed) without applying thresholds applied to the evidence (the interrogation protocol). Here, red and yellow indicate the weighted
evidence in favor of the other two responses, corresponding to stimuli with maximal activation at units 1 and 14 (10° and 200°, solid and dashed respectively). Red and
yellow dashed lines indicate activation in the LIP units most sensitive to these stimuli. Individual timecourses of activity for 10 trials are shown for theweighted input to SC 2
(magenta) and for LIP 6 (green). Panel C shows the average state of weighted evidence accumulation for SC 2 (blue solid) and average unit 6 activity (blue dashed) within free
response trials (black line indicates threshold). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Effects of weight learning rule. The threshold is fixed at θ = 2. There are four alternatives (3, 6, 14, 22), and the learning rate is α = 0.01. In the bottom panel the
signal strength is plotted on the right axis (circles), and the weights are shown on the left axis (stars). The RSI used in the calculation of RR is D = 0.5.
in this case, the average values of the weights take the same shape
as the signal vector. Similar comments apply, mutatis mutandis, to
the upper left panel.

We also performed simulations using different shapes for the
signal vectors, in order to verify that the Gaussian shape achieved
by theweight vectors is not simply an artifact of the Gaussian noise
in the equation for the LIP units. This is seen in Fig. 7. Here we
plot the averaged weights using cosine and 1 − |x| shapes for the
signal vectors. As with the Gaussian shapes, we see that the weight
vectors tend, on average, to the shape of the signal vectors.

Additionally, we performed a variety of simulations to examine
the effects of the various parameters in the model. Generally, the
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Fig. 6. Averaged weights over 150 blocks of 500 trials. In the top row φ = 4; in the bottom row φ = 8.
Fig. 7. Averaged weights with cosine and 1 − |x| shapes.
model is insensitive to changes in the parameters a, c, k, w, in the
sense that the weights tend on average toward the optimal weight
shapemimicking the shape of the signal vectors. If the learning rate
α is made smaller, the weights take longer to track to the shape of
the signals, but there is less variation around these mean values.

5. Discussion

5.1. Comments on the present work and directions of future research

The simple rule (10)–(11) works remarkably well at learning
the shapes of the signal vectors from MT to LIP. This leads to
a dramatic improvement in performance, and occurs without
any direct connection to the MT layer. The three layer model
incorporates integration of information, a rule for making the
decision, as well as a simple algorithm for learning to optimize
reward rates by learning the shapes of the vectors of neural signals
coming from an input layer. These components are the essential
aspects of a complete decision-theoretic model.

A great advantage of the simple model we have proposed is
its flexibility. For instance, one can take a continuous limit in the
update rule (10)–(11). The Eq. (10) may be rewritten as

wnew
ij − wold

ij

α
= −wold

ij + rzixj. (21)

Therefore, supposing that theweightswij are functions of time and
thatwnew

ij is the update to theweightwold
ij after a time step of α, we
may take the limit as this time step approaches zero to obtain the
continuous version of the update rule:

dwij(t)
dt

= −wij(t) + r(t)zi(t)xj(t). (22)

Notice that if the threshold θ for the yi’s is fixed, an overall increase
in the weights wij has the effect of amplifying the accumulators.
Thus, the threshold is crossed sooner, and the effective threshold
is thereby reduced. The continuous version of the update rule (22)
can thus be modified to a scheme that not only updates the shapes
of the weights, but the normalizing factor w0 of the weights, and
hence the overall strength of the weights.

Such an algorithm was used in the case of two alternatives
in Simen and Cohen (2009). (See a related algorithm in Simen,
Cohen, and Holmes (2006).) In the two-alternative context in
which different responses are rewarded at random intervals, but
with different expected delays to reward, the model selects the
more frequently rewarded response more often (the ratio of
responses of each type in fact matches the ratio of rewards earned
for each response type, consistent with the ‘matching law’ of
behavioral psychology (Herrnstein, 1997)). In a work in progress
we examine a modified version of this approach that not only
updates the thresholds but the weight shapes defining a tuning
curve as well. Thus the continuous-time version of the algorithm
already has a promising connection to well-known behavioral
findings.

Themodel is amenable tomodifications to account for changing
conditions across trials. Reward rates are optimized over all
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networks with the structure depicted in Fig. 1 when the weight
shapes are fixed at the shapes of the possible signal vectors.
However, the rule (10)–(11) incorporates a variation around the
means of these signals if the learning rate α > 0. In a sequence
of trials, one may reduce α over time so that these variations
continually decrease. In effect, one learns the incoming signals by
first allowing α to be moderately large, and then reducing α as the
weights get closer and closer to the means of the accumulators in
the LIP layer.

A number of issues raised by this work remain to be explored.
One of these is to see how this model may be modified to account
for situations in which various aspects such as the RSI, number
of alternatives and signal-to-noise ratio are changing from trial
to trial. We have also assumed that the signals from MT to LIP
are constant across trials, which is obviously not realistic. Hebbian
learning rules such as the one considered in the present paper may
be employed to learn weights from MT to LIP neurons, and thus
adjust to different tasks. A temporary increase in α, for example,
could be used to adapt to any sudden changes in task conditions.

5.2. The place of the present work in the context of recent research

The network we propose has several advantages. For one,
it is extremely simple, as can be seen in the summary of the
complete model in Table 1 in Section 3. This simplicity makes
the model tractable for analysis, and it also suggests an extremely
simple physical substrate that could plausibly be implemented
in the brain (a substrate composed of the same electric circuit
components used to model the individual neuronal membrane).
The model also incorporates decision making criteria: a decision is
made once one of the units in the decision layer crosses a threshold.
Thus we have focussed our discussion on how it performs in
the free response protocol. It is trivial to adapt the model to the
interrogation protocol: if the weights are correctly tuned, then at
any given time the most likely hypothesis corresponds to the one
with the largest weighted sum of LIP unit activities (McMillen &
Behseta, 2010, cf. Eq. (44)). The network is also easily adaptable.
If the signal vectors change, the network can quickly learn the
optimal weights to encode these new alternatives.

Furman and Wang (2008) investigated one generalization of
such networks in the context of a more detailed but less analyt-
ically tractable model, and suggested that a continuous decision
was difficult for reduced models of the type investigated here.
However, we have shown that the solution to the continuumprob-
lem is straightforward: simply adding more units as done by Fur-
man and Wang (2008) is sufficient for achieving decision making
in the continuum context. Moreover, when decision making re-
quires a discrete set of responses, nearly optimal performance can
be analytically assessed for the LCA model through a direct map-
ping onto the MSPRT, the only known, computationally tractable
N-alternative hypothesis testing procedure with fixed thresholds
that approximates optimal performance. The model of Bogacz and
Gurney (2007) also leverages the same analytical tractability to im-
plement the MSPRT in the case of Kronecker delta tuning curves.

Beck et al. (2008) investigated the same problem from
the perspective of optimal integration of information using a
scheme that requires spike statistics and the way that neurons
integrate spikes to meet certain restrictions. For the case of
multiple alternative decisions, the authors evaluate their theory
by comparison with single-cell recordings from monkey lateral
intraparietal cortex during the performance of a random-dot
motion discrimination task. The optimal evidence accumulation
then is obtained via linear integration of neural activity and
eventually ismodeledwith a straightforwardBayesian formulation
across trials and over time. The proposed Bayesian model is then
used to validate the tradeoff between accuracy and speed in
decision making.
Optimality, in Beck et al. (2008), means that the accumulation
of evidence is done without loss of information, so that the most
likely action is chosen through dynamic attractors. In the context
of the interrogation protocol, where the decision is made after
a fixed time, this definition of optimality coincides with the one
employed in the present paper, of maximizing reward. With their
primary focus on information integration, Beck et al. (2008) do not
address the issue of when tomake the decision, and therefore their
approach does not address how reward rates can be maximized
in the free response protocol where the participant may decide at
any time. The advantage of the model proposed here is that with
nothing more than a classic, nearly linear firing-rate model that
can be implemented with an economy of physical components,
we can implement an approximately optimal decision making
procedure and thereby give a complete, decision-theoretic account
of decision making by these networks.

Furthermore, the dynamics of decision making in our model
are qualitatively the same as in the aforementioned models. On
each trial, an initial Gaussian signal that is buried in a white noise
background is scaled up vertically, while noise is reduced relative
to the peak signal amplitude. The resulting increase in the ratio
of the integrated signal to the noise produces greater accuracy
the longer the stimulus is viewed. This cleaned up signal is then
effectively compared to a template of possible signal alternatives
that is learned over many trials before being compared to a
threshold for response initiation, and threshold adaptation can
then be used to adjust speed-accuracy tradeoffs by themodel. Such
a process requires no violation of the assumptions made in linear
systems theory, and is therefore highly analytically tractable.

The similarity of the activation dynamics arising from these
different modeling approaches suggests that the overall shape of
a developing neural theory of decision making may be robust
to variations in detailed implementation — a point we should
find encouraging, since all tractable approaches to brain modeling
depend on simplifying assumptions that are bound to be wrong at
a more fine-grained level of description.

Given its compatibility with linear systems theory, it is, finally,
worth noting that our model is quite compatible with linear
models of perceptual learning that learn to pool the information
from MT cells to produce efficient evidence integration in
LIP (e.g. Law & Gold, 2009). Optimal linear classification of
perceptual signals presented for fixed durations was investigated
by these authors, and the reinforcement learning process they
apply leads to a set of MT-to-LIP weights that would complement
the set of LIP-to-SC weights that our learning rule acquires. In
future work, we plan to incorporate learning at all levels, and
to investigate whether the reward-modulated Hebbian learning
approach we take here is as capable of learning linear-optimal
decoding schemes as the prediction-error-based approach of Law
and Gold (2009) (which is not applicable to free response tasks),
and the incremental reweighting approach of Petrov, Dosher,
and Lu (2005). In general, our work continues the progression
begun by these and other models, which suggest that the neural
retuning underlying perceptual learning occurs farther away from
the primary sensory cortices than originally believed. The model
of perceptual learning we propose suggests that some amount
of learning in fact happens at a stage that is still farther from
sensory inputs and closer to motor outputs: it can take the outputs
of linear-optimal stimulus classification procedures and convert
them into linear-optimal evidence accumulation processes that
achieve reward-maximizing speed-accuracy tradeoffs.
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