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Perceptual decision making has been successfully modeled as a process of evidence
accumulation up to a threshold. In order to maximize the rewards earned for correct
responses in tasks with response deadlines, participants should collapse decision
thresholds dynamically during each trial so that a decision is reached before the deadline.
This strategy ensures on-time responding, though at the cost of reduced accuracy, since
slower decisions are based on lower thresholds and less net evidence later in a trial
(compared to a constant threshold). Frazier and Yu (2008) showed that the normative rate
of threshold reduction depends on deadline delays and on participants’ uncertainty about
these delays. Participants should start collapsing decision thresholds earlier when making
decisions under shorter deadlines (for a given level of timing uncertainty) or when timing
uncertainty is higher (for a given deadline). We tested these predictions using human
participants in a random dot motion discrimination task. Each participant was tested in
free-response, short deadline (800 ms), and long deadline conditions (1000 ms). Contrary
to optimal-performance predictions, the resulting empirical function relating accuracy to
response time (RT) in deadline conditions did not decline to chance level near the deadline;
nor did the slight decline we typically observed relate to measures of endogenous timing
uncertainty. Further, although this function did decline slightly with increasing RT, the
decline was explainable by the best-fitting parameterization of Ratcliff’s diffusion model
(Ratcliff, 1978), whose parameters are constant within trials. Our findings suggest that at
the very least, typical decision durations are too short for participants to adapt decision
parameters within trials.
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INTRODUCTION
Noisy evidence accumulation models such as the drift-diffusion
model (DDM, Ratcliff, 1978, 1981, 1985, 1988, 2002) have suc-
cessfully explained accuracy and RT patterns in two-alternative
forced choice (2AFC) perceptual decision tasks. The DDM has
also been useful in defining an optimality-based benchmark for
decision making. For instance, Bogacz et al. (2006) formulated
a parameter-free optimal performance curve (OPC; Figure 1)
relating the DDM’s decision speed to its accuracy in a class of
2AFC tasks. Specifically, on tasks in which the signal-to-noise
ratio (SNR) stays constant within a test block and within trials,
the two stimulus types are equally likely and participants are free
to wait as long as they wish prior to responding. The OPC pre-
scribes an optimal normalized decision time (DT) for a given
level of accuracy in order to maximize the expected reward rate
(RR) in such free-response paradigms. If the signal quality is
very high, then little evidence needs to be accumulated to achieve
high accuracy; conversely if there is no signal in the environ-
ment (necessarily yielding an error rate around 0.5), the decision
maker should accumulate little or no evidence before making a
choice. In this way, the participant can maximize the number
of decisions made (trials generated) in a fixed amount of test
duration. However, when the SNR is at an intermediate level, the
optimal decision strategy requires accumulating more evidence

(and thus generating fewer trials) for maximizing the RR; the
maximum decision time is associated with accuracy levels of
roughly 0.8. Note that the OPC for 2AFC tasks was defined based
on the assumptions of the reduced DDM analyzed by Bogacz
et al. (2006), which lacks the between-trial variability of the core
parameters found in Ratcliff ’s DDM.

Inherent in the formulation of the OPC is a trade-off between
speed and accuracy of decisions (SAT; Wickelgren, 1977), which
posits that fast responses suffer from less evidence accumulation
and are thus less accurate, whereas slower responses benefit from
more evidence accumulation resulting in higher accuracy at the
cost of time. In formal decision making models such as the DDM,
SAT is represented by a threshold parameter that determines how
much evidence is accumulated in favor of each hypothesis in a
2AFC task (Figure 2). A higher threshold requires more evidence
accumulation and thus underlies a slower response, on average,
whereas a lower threshold leads to a faster response at the expense
of an increased chance of errors due to noisy evidence accumu-
lation (e.g., Ratcliff and McKoon, 2008). Research shows that,
with extensive training, participants can maximize their RR by
setting the optimal threshold, which defines the optimal trade-
off between the speed and accuracy of their decisions (e.g., Simen
et al., 2009; Balci et al., 2011b). However, behavioral studies test-
ing for optimality in 2AFC paradigms typically do not enforce
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FIGURE 1 | Optimal Performance Curve derived from the pure Drift

Diffusion Model. Horizontal axis shows ER and vertical axis shows the
normalized decision time, i.e., Decision time divided by RSI + Ter;
Reproduced from Bogacz et al. (2006).

FIGURE 2 | Sample Drift-Diffusion process with (A) constant

thresholds, and (B) exponentially collapsing thresholds which meet at

a hypothetical deadline of 3000 ms. Red lines represent the two decision
thresholds; blue line represents the evidence accumulation process
[identical in both (A,B)]. Threshold crossing time represents the decision
time. Total RT equals decision time plus non-decision latency.

hard time constraints on the decision making process (e.g., Feng
et al., 2009; Simen et al., 2009; Bogacz et al., 2010; Starns and
Ratcliff, 2010, 2012; Balci et al., 2011b), which provides a the-
oretically infinite (in reality limited by the test block duration)
amount of time to the participant before a decision must be
made.

Decisions in real life scenarios rarely enjoy such temporal
luxury for gathering evidence, but instead often need to be

terminated before a pre-specified deadline, after which no reward
can be earned (e.g., in class exams). Optimal behavior in such
settings requires the decision maker to collapse decision thresh-
olds as the deadline approaches, such that they meet when the
deadline is reached, in order to secure at least a 50% chance of
earning a reward, as opposed to a 0% chance if responding late.
In this regard, see Frazier and Yu (2008), who analyzed optimal
threshold collapse for a loss function that linearly combines an
indicator of on-time, accurate responding, the RT itself, and a
penalty for late responding. This loss function is closely related,
but not identical, to an objective function equaling the RR. As
such, the notion of time-dependent collapsing thresholds (or sim-
ilarly, time-dependent inflation of evidence accumulation rates)
has received a great deal of attention in the decision making lit-
erature (Luce, 1986; Rao, 2010; Drugowitsch et al., 2012; Thura
et al., 2012).

Two interesting hypotheses emerge from this formulation.
First, a higher level of endogenous timing uncertainty (for a
fixed deadline) requires an earlier threshold collapse, along with
a lower rate of decline (see Frazier and Yu, 2008; Figures 2A,B).
Within this formulation, endogenous timing uncertainty refers
to the trial-to-trial variability in a participant’s estimates of time
intervals (Buhusi and Meck, 2005). Second, for a given level of
timing uncertainty, threshold collapsing should begin earlier for
a shorter deadline. Balci et al. (2011a) tested these previously
untested predictions in a pilot study but found little evidence
of collapsing thresholds; however, their design might not have
been optimized to investigate these predictions that might have
obscured signs of threshold collapse (e.g., not terminating the
RDM stimulus at the deadline). This study tests these predic-
tions more rigorously, and thereby elucidates the extent to which
optimal behavior in 2AFC is achievable when reward maxi-
mization entails within-trial modulation of decision thresholds.
Additionally, we aim to investigate the extent to which, if at
all, participants are successful in factoring their level of timing
uncertainties into their threshold modulation.

In order to formally define the optimal 2AFC behavior,
whether under response deadlines or not, we need mathemat-
ical models which can accurately describe accuracy along with
RT in 2AFC tasks by relying on various psychomechanistic com-
ponents underlying a complete decision making process. One
such model is the above-mentioned DDM, which conceptualizes
decision making as a bounded, noisy, evidence accumulation pro-
cess (Figure 2) in the form of an ongoing computation of the
current log-likelihood ratio of the two hypotheses under con-
sideration (Stone, 1960). At its core, the DDM is a continuous
version of the Sequential Probability Ratio Test (SPRT), which
is a statistical procedure for minimizing the number of sam-
ples necessary to decide between two hypotheses with a given
mean accuracy, as well as maximizing the likelihood of arriv-
ing at the correct hypothesis for any given number of samples
(Wald and Wolfowitz, 1948). In the formulation of the DDM,
the step time between the samples accumulated in an SPRT
becomes infinitesimal, resulting in a continuous random walk,
where the duration from the start of the evidence accumula-
tion until a threshold crossing represents the decision time (see
Stone, 1960).
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The drift-diffusion process is defined by the stochastic differ-
ential equation:

dx = Adt + cdW (1)

Here, as in Bogacz et al. (2006), x denotes the difference between
the evidence supporting two different alternatives at time t, Adt
represents the average increase in x during the interval dt, and
cdW is Gaussian distributed white noise with mean 0 and vari-
ance c2dt (Ratcliff and Smith, 2004). When x crosses one of the
two decision thresholds (one above the starting point, and one
below it) a decision is made. This threshold crossing time rep-
resents the decision time. Within this formulation the drift rate
A represents the average rate of the evidence accumulation, and
is the slope of this random walk process. On the other hand,
the noise component explains the random fluctuations in the
same process and accounts for the fact that a given SNR can
lead to correct decisions in some trials and errors in some oth-
ers. This model is now referred to as the pure DDM (Figure 2;
see Bogacz et al., 2006). It uses RT and accuracy data in order
to describe decision performance by quantifying drift rate (v;
rate of evidence accumulation), boundary separation (a; decision
threshold), non-decision related latency (Ter), and starting point
(z) parameters. In a more generalized version, three parameters
of the DDM (v, z, and Ter) were made variable on a trial-by-trial
basis, mainly to allow for fitting data with unequal average RT for
correct and incorrect responses (Ratcliff and Rouder, 1998) and is
appropriately named the extended DDM (see Bogacz et al., 2006).

The DDM has been successful in explaining RT and accuracy
data in various psychophysical studies (see Voss et al., 2013 for a
review) including recognition memory (Ratcliff, 1978; McKoon
and Ratcliff, 2012), brightness discrimination (Ratcliff, 2002),
color discrimination (Spaniol et al., 2011), and even the classi-
fication of clinical disorders (Mulder et al., 2010; White et al.,
2010). Of greater relevance to this study, however, is the DDM’s
utilization in prescribing unique threshold parameters for RR-
maximizing (i.e., optimal) performance in 2AFC tasks. As men-
tioned earlier, the theoretical work by Bogacz et al. (2006) has
defined a closed-form RR-maximizing function that prescribes a
specific average decision time for each error rate (ER), and also
defines the OPC. Bogacz et al. (2010) and Simen et al. (2009)
have tested the extent to which human participants are optimal
in setting RR-maximizing thresholds, and have found that within
a single session, thresholds were generally set too high compared
to their optimal values. Balci et al. (2011b) have replicated this
finding, but have also shown that this accuracy bias diminishes
with practice.

Bogacz et al. (2010) and Balci et al. (2011b) argued that sub-
optimal performance due to favoring accuracy over reward rate
(observed in their studies after a limited level of training) might
be an adaptive threshold setting bias that takes into account
endogenous timing uncertainty. This adaptive bias was attributed
to the asymmetry (i.e., lower rate of decline in RR for thresh-
olds higher than the optimal threshold) in the RR curves as a
function of decision threshold (Bogacz et al., 2006; Figure 15),
which entails that setting the threshold higher than the optimal
threshold leads to a higher RR than setting it too low by the same

amount. A more adaptive response under endogenous timing
uncertainty therefore entails favoring slower yet more accurate
responses (Bogacz et al., 2006; Balci et al., 2011b). Balci et al’s
(2011a) findings suggest that participants can “monitor” their
levels of uncertainty regarding temporal properties of the task,
and thereby factor it into the decision process. This proposi-
tion is further supported by studies showing that humans and
other animals can in fact take normative account of their tim-
ing uncertainties at both sub- and supra-second intervals in order
to reach optimal performance when they make decisions based
on the durations of stimuli/events ( e.g., Hudson et al., 2008;
Balci et al., 2009; Jazayeri and Shadlen, 2010; Simen et al., 2011;
Çavdaroğlu et al., 2014; for a review see Balci et al., 2011a).
Overall, these studies suggest that timing uncertainty is instru-
mental in shaping choice behavior and determining how much
reward is earned both in temporal and non-temporal decision-
making. The importance of interval timing to perceptual decision
making is further emphasized by recent studies proposing pos-
sible mechanisms (e.g., gain modulation) by which temporal
information processing can modulate speed-accuracy tradeoffs
(e.g., Standage et al., 2011, 2013).

Endogenous timing uncertainty becomes even more relevant
to optimal choice behavior in 2AFC perceptual decision making
when a response deadline is explicitly introduced to the deci-
sion process. Such situations are familiar to most organisms in
their natural settings, within which contextual temporal proper-
ties constantly require arriving at a decision before a stochastic
deadline. For instance, correctly identifying when and how long
a prey will be available in a hunting ground, as well as which
prey to hunt among the alternatives (“Slow but old?,” “Young
but fast?”) are of vital importance for a predator’s survival. The
optimal predator in its attempt to choose the best option should
also require less and less information for arriving at a decision
as the time for the prey animals to leave approaches. This strat-
egy ensures that it catches at least one prey, though perhaps not
an ideal one, instead of losing all. Moreover, it should engage in
this decision process while simultaneously relying on its level of
uncertainty regarding how much time it has before a choice must
be made. If it is too uncertain about temporal intervals, or the
time until the prey animals leave is too short, the predator should
start reducing the required level of evidence earlier, and should
at worst pick a random prey right before the time to leave, if it
still hasn’t done so. This hypothetical naturalistic scenario exem-
plifies the above-mentioned optimal strategy in a situation with a
response deadline, which is to collapse the decision threshold such
that by the time the deadline is reached, a response of at least 50%
accuracy is ensured.

Two main hypotheses emerge under this scenario. First, for a
given deadline, higher timing uncertainty makes it necessary to
collapse thresholds earlier compared to lower timing uncertainty,
so that the deadline is not passed by accident, ultimately resulting
in an opportunity cost. Second, for a given timing uncertainty,
participants need to start collapsing decision thresholds earlier
for shorter deadlines, compared to longer ones. Frazier and Yu
(2008) have shown that both predictions should manifest them-
selves with steady decline in accuracy as time approaches the
deadline, which should closely parallel the presumed decline in
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decision thresholds. We can quantify this time-dependent decline
in thresholds by calculating accuracy levels for RTs bins of a spe-
cific size. The resulting curve formed by connecting the accuracy
levels in these bins constitutes the conditional accuracy (a.k.a.
Micro Speed Accuracy Trade-off) curve (Wickelgren, 1977; Luce,
1986). Since the diffusion process calculates the log-likelihood
ratio of the two hypotheses, a particular accuracy level is assured
by setting a particular decision threshold. When accuracy data
is sorted and binned in this way, this principle should still hold
for each individual RT bin. Thus, if the threshold is dynamically
set lower in later time bins, then by definition this also prescribes
lower accuracy for those bins (Luce, 1986).

Here, we conduct simulations in order to approximate the
optimal relationship between threshold collapsing and (1) the
deadline duration and (2) the level of endogenous timing uncer-
tainty. For the collapsing thresholds we use two closed-form
collapse functions: exponential and linear. Figure 3 depicts the
threshold collapsing functions (assuming exponential collapse
functions) that yielded the highest number of rewards for differ-
ent response deadlines (for a given level of timing uncertainty)
and for different levels of endogenous timing uncertainty (for a

given deadline). As predicted by Frazier and Yu (2008), visual
inspection of Figures 3A,B suggests that reward-maximizing
threshold trajectories should nearly meet at the response dead-
line, and threshold collapsing should start earlier in the trial
for shorter deadlines and higher levels of timing uncertainty.
Our simulations showed very similar results when RR instead of
“reward amount” is taken as an indicator of optimality. These
results qualitatively mimicked the analytically derived functions
found by Frazier and Yu (2008) for an objective function closely
related to RR (see Methods).

To the best of our knowledge, the aforementioned predictions
have not been directly tested by employing hard response dead-
lines (but see Balci et al., 2011a for description of a pilot study).
Neither has the relationship of 2AFC behavior under response
deadlines been empirically related to the decision maker’s level
of endogenous timing uncertainty. The present study fills this
empirical gap. Finally, we conducted further simulations to deter-
mine whether different levels of trial-to-trial variability of the
core DDM parameters that might result from the introduction of
the response deadlines can explain our data without alluding to
dynamic (within-trial) threshold modulation. These simulations

FIGURE 3 | Optimal threshold collapse trajectories selected from the

family of exponential decline functions for three different response

deadlines and six hypothetical levels of timing uncertainty when

optimality criterion is taken as (A) the expected total reward, and (B)

reward rate. Vertical dashed lines represent the response deadlines (800,
1000, and 1200 ms).
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were necessary given that it is also possible to observe a reduc-
tion in conditional accuracy curves without any corresponding
threshold modulation as suggested by Frazier and Yu (2008).
Our simulations confirmed this possibility by showing that such
declines in accuracy with RT in these conditional accuracy curves
can emerge directly from Ratcliff ’s model without any within-
trial collapsing of the threshold, as shown previously (Ratcliff and
Rouder, 1998; Ratcliff and McKoon, 2008).

MATERIALS AND METHODS
PARTICIPANTS
Eleven adults (6 males and 5 females), aged between 18 and 24
years (M = 20) were recruited through announcements posted
online at the daily newsletter of Koç University. One partici-
pant (male, aged 24) stopped attending experiments after the first
session, and his data were discarded from all analyses. The exper-
iment consisted of eight, daily, one-hour long sessions comprised
of two Free Response (FR) sessions, four Deadlined Response
(DR) sessions, and two Temporal Reproduction (TR) sessions
in that order (see Procedure below). One participant missed a
single DR session, and another participant missed the second
TR session. The experiment was approved by the Institutional
Review Panel for Human Subjects of Koç University and was in
accordance with the principles of the Declaration of Helsinki. All
participants provided written consent for their participation.

APPARATUS
All stimuli were presented on a 21′′ LCD screen on an Apple
iMac G4 computer, generated in Matlab using the Psychtoolbox
Extension (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) on the
SnowDots framework developed by Joshua Gold at the University
of Pennsylvania. Participants sat at a distance of 58–63 cm from
the screen, in a dimly lit room and provided their responses using
a standard Apple iMac keyboard, and stereo noise-cancelling
headphones worn throughout the experiment gave auditory feed-
back.

STIMULI AND PROCEDURE
Free response dot motion discrimination task
Stimuli were random dot kinematograms (see Gold and Shadlen,
2001; Shadlen and Newsome, 2001). These Random Dot Motion
(RDM) stimuli consisted of a circular aperture of randomly mov-
ing white dots (3 × 3 pixels) on a black background, with a
diameter of approximately 3 inches, centered on the screen. On
each trial, 16% of the dots moved coherently in rightward or left-
ward direction (0 or 180 degrees respectively). The motion direc-
tion was assigned randomly with equal probability. Participants’
task was to use the ‘Z’ or ‘M’ keys on the keyboard to report
the direction of the coherently moving dots. Stimuli stayed on
the screen until a response was given, at which moment they
were terminated. Trials were separated by a response-to-stimulus
(RSI) interval, sampled from a truncated exponential distribu-
tion with a mean of 2 s, a lower bound of 1 s, and an upper
bound of 5.6 s. Correct responses were followed by an auditory
beep indicating positive feedback, whereas no feedback was given
for incorrect responses. This method of giving auditory feed-
back is standard in most 2AFC tasks, and has been shown to

aid acquisition (e.g., Herzog and Fahle, 1997; Seitz et al., 2006),
which was also the central purpose of our FR sessions (Figure 6).
Premature/anticipatory responses (i.e., responses less than 100 ms
after the offset of the stimulus) were penalized by a 4 s time-
out, following a buzzing sound. Participants earned 2 kurus
(approximately 1 cent) per correct response in experimental trials
(excluding practice blocks), whereas no punishment was given for
incorrect responses. The cumulative number of correct responses
was presented on the screen every 10 trials in font size 12 (approx-
imately 0.7 cm height). FR session consisted of a 2-min practice
block, followed by eight 5-min test blocks, and a 4-min Signal
Detection (SD) block. The data from these SD blocks were not
used in this study.

Deadlined dot motion discrimination tasks
The DR sessions consisted of a 2-min practice block with FR tri-
als, followed by one 5-min experimental FR block (same as the
one described above), followed by two groups of four DR blocks,
each group preceded by a 2-min practice block of the corre-
sponding deadline (see below). Stimulus types and presentation
schedules in DR blocks in these DR sessions were identical to
those used in FR sessions, except for the assignment of either a
short (800 ms) or a long (1000 ms) deadline to every trial in the
block. In these DR trials, if the participant failed to respond before
the pre-specified fixed deadline, the RDM stimulus disappeared,
a buzzing sound was played (indicating a “late response”) and no
reward was given for that trial. Otherwise, identical to the FR tri-
als, the RDM stimulus disappeared upon a given response and a
reward was given for correct responses.

After a 10 s intermission following the above-mentioned sin-
gle 5-min FR block, and the 2-min practice block of DR trials,
four 5-min experimental blocks with the same type of DR trials
employing one of the deadlines (i.e., short or long) were pre-
sented. These blocks were followed by a 30-s intermission, after
which the same order of practice and experimental blocks was
presented, this time using the other deadline. Individual blocks
were separated by a minimum break of 10-s, after which the par-
ticipant made a button press to start the following block. The
order of deadlines was randomized across the two halves of the
eight DR blocks in each session. Identical with the FR sessions,
two 2-min SD blocks were presented at the end of each session,
and the data from these SD blocks were not used in this study.

These two hard deadlines were chosen based on the data col-
lected from single session pilot testing with only the FR blocks.
These data showed that the majority of participants’ RTs ranged
between 400 and 2500 ms, with a mean of 700 ms. Based on these
data we chose two deadlines, the “easy” deadline of 1000 ms (on
average 15% of the RTs were longer than 1000 ms; s.e.m. = 4.41)
and the more “stringent” deadline of 800 ms (on average 28%
of the RTs were longer than 800 ms; s.e.m. = 6.32). This way,
we planned to have enough data from trials with RTs near the
response deadlines. It can be argued that shorter deadlines might
have made the task so difficult as to preclude strategic time-based
decision-making. That said, we observed that participants sped
up their free response RTs in the deadline blocks (Figure 7) and
thus the deadline stringency was not as high as we intended dur-
ing the study design. Nonetheless, the deadlines clearly exerted
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an effect on speed and accuracy relative to free responding, as
we demonstrate below, and the two deadline durations should
have been sufficiently discriminable from each other that a dif-
ferential effect on behavior could have been expected. The ratio
between 800 and 1000 ms constitutes a discriminable differ-
ence for humans; given a coefficient of variation (CV; Section
Temporal reproduction task – static stimuli) of 0.12, the differ-
ence is over two standard deviations for the standard duration
of 800 ms (Malapani and Fairhurst, 2002). This CV value is also
consistent with earlier data (see Wearden, 2003).

Temporal reproduction task – static stimuli
The TR task consisted of the presentation of a stimulus for a spe-
cific duration, after which the participant tried to reproduce the
same duration as accurately as possible by holding down the space
button. The stimulus used in the first TR task was a 3 × 3 inch
green square, placed in the middle of the screen. Each TR trial
started with a button press after which the square was presented
for a specific duration. The TR session started with a practice
block of 9 trials using 3 randomly ordered target durations (i.e.,
1.3, 2.3, and 3.3 s) with equal frequency. After the reproduced
interval on practice trials, visual feedback was given by placing
an approximately 1 cm white vertical line either to the left or right
of a red reference line in the middle of the screen, representing the
reproduced and given durations, respectively. The offset length of
the white line was proportional to the difference between given
and reproduced durations, whereas its location (left vs. right)
showed under- or over-reproduction, respectively.

Nine 5-min test blocks of three target durations (1, 2.12, and
4.24 s), were presented in pseudo-random order following the
practice trials. No feedback was given in test trials. The amount of
money earned in each block was a function of the target duration,
the average of absolute deviance scores for that block, and a maxi-
mum of 2.5 Turkish Liras that could hypothetically be earned with
perfect performance (i.e., mean deviance score of 0), calculated
using the following formula;

Total Earnings = Maximum Possible Amount

× (
1 − Average Deviance Score/Target Time

)
(2)

Therefore, a smaller deviance score was required in a block
of shorter target durations, compared to a block of longer to
be-reproduced durations, in order to earn the same monetary
reward.

The total amount earned was shown at the end of each block.
Participants’ endogenous timing uncertainties were quantified
using reproduction data for each duration by dividing the stan-
dard deviation of reproduced durations by their mean. This is
a statistical procedure for obtaining the CV of a dataset, and is
used as an indicator of endogenous timing uncertainty, which
is typically constant for different durations within an individual
(Gibbon, 1977; Buhusi and Meck, 2005). The CV is an appropri-
ate measure of timing uncertainty since when the CV is known,
one can estimate the expected error of the same individual for
other intervals (CV times t). Thus, many studies in the interval
timing literature use CV as a measure of timing uncertainty (e.g.,
Gibbon, 1977; Balci et al., 2011a).

Temporal reproduction task–RDM stimuli
These additional TR sessions were identical to the original TR ses-
sion described above, except for replacing the static green square
with a RDM stimulus identical to the one used in FR and DR
sessions (i.e., dot motion stimulus with 16% coherence). The pur-
pose in replacing the static stimulus with the RDM stimulus was
to replicate as closely as possible the conditions in which the FR
and DR sessions took place, since a TR task more similar to these
2AFC tasks could better capture the representation of attentional,
as well as temporal, dynamics underlying the decision making
process (see Zakay and Block, 1996). This in turn should lead to
more accurate estimates of timing performance (i.e., CV) as man-
ifest in the decision task and thus values that are more appropriate
for generating threshold collapse predictions in DR sessions. In
order to make sure that the motion direction was being attended
to, participants were asked to report the direction of motion using
the “Z” or “M” keys in 20% of the trials, following the time repro-
duction. “Total Earnings” (Equation 2) were multiplied by the
proportion of accuracy in reporting the direction of motion in
each block.

Since the error rate in direction judgments would inevitably
decrease the total amount earned in these TR sessions compared
to those using the static stimuli, the maximum possible amount
that could be earned per block was increased from 2.5 to 3 Turkish
Liras. Each TR task (i.e., with static or RDM stimuli) lasted for a
single session. The TR testing was shorter than the 2AFC tasks
because estimating temporal accuracy and precision does not
require as large of a dataset as one needs for the DDM fits and
conditional accuracy curves.

DATA ANALYSIS
Quantifying declining accuracy with time
In order to quantify a possible decline in accuracy as time elapsed
within trials, accuracy levels were calculated for each 50 ms RT
bin, forming the conditional accuracy curves. Bins with less than
4 data points, as well as RTs above 5 s, were excluded from all
further analyses. The exclusion criterion for bin size was based
on post-hoc analyses of the data, especially for the last two RT
bins (i.e., at around the deadline), which generally contained
less data points than the ones that corresponded to shorter RTs.
Our analysis showed that nine participants had at least 4 data
points in the last RT bin in the short deadline condition, whereas
this number declined to four participants in the long deadline
condition. Since the accuracy at and near the deadline was of high
relevance to this study, we set our exclusion criterion to allow for
involving these participants’ RT data in further analyses. Note
that our original choice of the specific response deadlines based
on free response RT distributions aimed for more data points to
fall in these later bins.

A conditional accuracy curve allows us to determine the RT
bin where a decline in accuracy starts, as well as the rate of this
decline. In order to define the specific point where the accuracy
trend changes, we found the RT bin at which the sum of squared
errors of two piece-wise linear fits to data before and after that
point (a.k.a. the knot) is minimized. This was achieved by run-
ning an algorithm which fits the piece-wise linear functions to
data by using each RT bin as a putative knot location where the
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first linear function is “latched on” to the second one. Specifically,
the algorithm constrains the intercept of the second linear fit to
be the last value of the first fit, forming two connected lines. Since
the last data point of the first fit affects the fit of the second line by
slightly modifying its slope, the algorithm runs in both forward
and reverse directions, ensuring that it finds the knot location
where the total error of the piece-wise fit is minimal, regardless
of which of the two slopes is modified. The purpose of using this
algorithm was to quantify the onset (i.e., inflection point), as well
as the slope of a possible decline in accuracy with RT separately
for two different deadlines. The correlations of these two values
(i.e., onset & slope) with timing uncertainty were later calculated
(Section Effect of Deadlines on Response Time and Accuracy) in
order to test if higher levels of timing uncertainty predicted an
earlier onset of decline in accuracy characterized by a lower (as
opposed to a steep) negative slope.

Optimal threshold collapse simulations
We conducted simulations in order to approximate the opti-
mal threshold collapsing trajectories for different deadline dura-
tions (800, 1000, and 1200 ms) and six linearly increasing levels
of endogenous timing uncertainty (i.e., CV), using two differ-
ent closed-form collapse functions (i.e., exponential and linear).
Below we describe the details for the exponential threshold col-
lapse function, but the same procedure applies to the linear col-
lapse function as well. Although our response paradigm employed
only two deadline durations (800 and 1000 ms), we have also
tested the 1200 ms deadline in these simulations. For the objective
function analyzed by Frazier and Yu (2008)–which may approx-
imate but is not identical to RR—analytically optimal collapse
functions look much like our exponentials.

In order to find the exponential threshold collapsing trajec-
tory that maximizes the number of rewards for a given deadline
and a given timing uncertainty, we first constructed a total of 101
threshold trajectories with 0.01 second increments, separately for
each CV value. The following formula was used to construct an
exponential curve:

a =
(

Asymptote + (
Starting Point − Asymptote

) × e(−c∗t)
)

(3)

where Asymptote was set at 0.1 for the upper threshold, Starting
Point was set at 0, c represented the rate of exponential decline
(i.e., as a proxy for temporal discriminability), and t is time. The
resulting curve was then flipped on its y-axis to construct the
upper threshold. This mirror image of the upper threshold was
used as the lower threshold (Figure 3).

All thresholds collapsed exponentially with time to the
starting point of evidence accumulation (Figures 3A,B). The
upper and lower thresholds with the earliest evaluated col-
lapse onset met well before the shortest deadline (i.e., 800 ms),
and the thresholds with the latest evaluated collapse onset
met well after the longest deadline (i.e., 1200 ms). The pre-
sumed effect of the timing uncertainty was implemented by
changing the exponential decay parameter (c; e.g., steeper col-
lapse for higher temporal discriminability due to lower timing
uncertainty).

For each response deadline, we defined the optimal threshold
trajectory as the one (out of 101 per CV) that yielded the great-
est number of rewards out of 106 drift-diffusion simulations. In
line with our experimental paradigm, in these simulations RTs
longer than the deadline duration were not assigned any reward.
The drift diffusion processes were simulated based on Equation 1.
The drift rate was set to 0.1, the noise coefficient was set to 0.1, the
starting point was set to 0 and non-decision time was set to 0. The
two decision thresholds were set to −0.1 and 0.1 at trial onset. For
simplicity, the core parameters were not allowed to vary between
trials. The results of our simulations supported Frazier and Yu’s
formulation; the optimal thresholds for a given deadline and a
given CV were the ones which nearly reached the starting point at
the response deadline even with closed-form collapse functions
(Figure 3A). These simulations also suggested that higher timing
uncertainty requires an earlier onset of threshold collapsing, so
that the upper and lower decision thresholds are ensured to meet
virtually at the deadline.

We have also calculated the optimal threshold collapse trajec-
tories by setting the criterion for optimality as the highest RR
instead of the highest amount of expected reward (Figure 3B).
The RR for each collapse trajectory was calculated by dividing
the mean accuracy by the mean RT. In calculating the RR, late
responses (i.e., those beyond the deadline) were given a value of
0 for accuracy (i.e., they were counted as error trials). RT was
defined as “DT + RSI + Ter”for trials with RTs faster than the
deadline, and “deadline + RSI” for trials where RTs were slower
than the deadline. Using values for the RSI and Ter very close to
the ones derived from our experimental paradigm, calculated the
expected RR for each collapse trajectory and found that, similar
to those in Figure 3A, optimal thresholds for a given CV were the
ones that roughly collapsed to the starting point near the deadline
(Figure 3B).

Visual inspection of Figure 4A shows that the order of the
optimal threshold (i.e., the order of a given threshold among
the 101 thresholds tested with 0.01 s increments) increases with
longer deadlines for a given CV, in addition to decreasing with
higher CVs for a given deadline. Additionally, conditional accu-
racy curves were plotted for the six hypothetical CV levels,
separately for the three deadline durations (Figure 4B). The
level of CV (i.e., the level of endogenous timing uncertainty)
was increased or decreased by decreasing or increasing the
rate of exponential decline (the c parameter in Equation 3),
respectively. Visual inspection of Figure 4B suggests that accu-
racy in our simulations declines with time for all levels of CV.
However, contrary to our expectations, accuracy never fully
reaches 50% (chance level) in these curves. Both Figures 4A,B
were constructed based on expected total reward as the optimality
criterion.

Finally, Figure 5A shows the expected total reward curves
for all 101 collapse functions constructed with the lowest
and the highest CV levels (out of the six CV levels) for the
three deadline durations. Visual inspection of Figure 5A sug-
gests that the expected total reward steadily increases with
the order of exponentially collapsing thresholds, and sharply
declines immediately following the deadline. Additionally,
Figure 5B shows the mean RTs and expected total rewards
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FIGURE 4 | (A) Bar graphs depicting the order of the optimal threshold
collapse trajectories (out of 101 thresholds with 0.01 s increments)
selected from the family of exponential decline functions for six
hypothetical levels of timing uncertainty. Lines connect the bars. (B)

Conditional accuracy curves for the six CV conditions, shown separately

for the three response deadlines. Red lines represent the conditional
accuracy curves for the short deadline (800 ms), blue lines for the
medium deadline (1000 ms), and green lines for the long deadline
(1200 ms). Both (A,B) are based on expected total reward as the
optimality criterion.

predicted for optimal threshold trajectories as a function
of CV, separately for the three deadlines. Figure 5B sug-
gests that with increasing timing uncertainty (i.e., CV level),
both the mean RT and the expected total reward decline.
See Supplementary Material for the linear threshold collapse
results.

RESULTS
ACCURACY AND RESPONSE TIME IN THE FREE RESPONSE
CONDITIONS
The data from the two FR sessions showed that the participants’
error rates declined from a mean of 10% in the first 4 blocks of
the first FR session, to a mean of 4.3% in the last 4 blocks of
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FIGURE 5 | (A) Expected total reward amount for the highest and
lowest CV levels as a function of the order of threshold among the
101 thresholds tested (here defined as “Threshold Order”). (B) Mean
response times and expected total reward amounts as a function of six

levels of CV defining six exponential threshold collapse trajectories for
the short (800 ms), medium (1000 ms) and long (1200) simulated
deadlines. Both (A,B) are based on expected total reward as the
optimality criterion.

the second FR session [t(9) = 3.1, p < 0.05; Figure 6] suggesting
that the FR sessions were successful in training the participants
on the RDM discrimination task. Additionally, the RTs showed a
similar decline with increasing blocks, with a mean of 0.94 s in
the first 4 blocks of the first FR session, to a mean of 0.75 s in
the last 4 blocks of the second FR session, however, this differ-
ence failed to reach significance (p > 0.05). RTs between the first
and second halves within the two FR sessions did not differ sig-
nificantly (both ps > 0.05), excluding the potential role of factors
such as an increased fatigue or inattention toward the end of a test
session.

Figure 7 shows the RT distributions in the FR blocks in FR
sessions, FR blocks in DR sessions, and the two deadline blocks in
the DR sessions. Figure 7 shows the plots either of all RTs pooled
across participants (Figure 7A), or RTs below the short deadline
duration (Figure 7B). A mean of 844.85 (s.e.m. = 20.1) trials

were completed in FR blocks in FR sessions, whereas this num-
ber was 105.2 (s.e.m. = 1.24) in FR blocks in DR sessions, 433.88
(s.e.m. = 2.27) in Short Deadline blocks in DR sessions, and
432.48 (s.e.m. = 2.82) in Long Deadline blocks in DR sessions.

EFFECT OF DEADLINES ON RESPONSE TIME AND ACCURACY
In order to determine whether introducing a deadline for
responding was successful in modifying behavior, we first com-
pared the mean RT values obtained by pooling data from both
FR sessions, the 4 DR sessions (separately for the short and
long deadline conditions), and the single FR blocks presented
at the start of each DR session for each participant. A one-way
repeated measures ANOVA was conducted to compare the effect
of response time limitations on mean RT in four conditions; two
free response (i.e., FR blocks in FR sessions and FR blocks in
DR sessions) and two deadline (i.e., short & long) conditions.
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FIGURE 6 | Mean error rate as a function of FR block. Mean error rates
per FR block in the first two sessions (i.e., FR sessions). Blue squares
correspond to FR blocks in the first FR session and red circles correspond
to FR blocks in the second FR session. Error bars denote the standard error
of the mean.

Since response deadlines act as a procedural censoring point for
slower RTs, only the RT values up to the short deadline (800 ms)
were compared in all conditions. Our analysis indicated a sig-
nificant effect of different experimental conditions on the RTs,
F(3,6) = 32.78, p < 0.001. Tests of six pair-wise comparisons were
conducted using Holm-Bonferroni adjusted alpha levels. These
comparisons showed that RTs in FR blocks in FR sessions (M =
602 ms) were significantly longer than both the short deadline
(M = 519 ms, p < 0.001) and the long deadline (M = 525 ms,
p < 0.001) conditions, as well as the response times of FR blocks
in DR sessions (M = 548 ms, p < 0.001). The difference between
the RTs in the two separate deadline conditions and the FR
blocks in DR sessions did not reach significance (both ps > 0.05).
However, when no correction was applied for multiple compar-
isons, the mean RT differences between FR blocks in DR sessions
and the two separate deadline conditions reached significance
(both ps < 0.05).

In order to further test if introducing a short vs. long dead-
line was effective, we compared the number of missed deadlines
for each deadline condition. A mean of 1.68% of deadlines were
missed in the short deadline condition (s.e.m. = 0.35), whereas
this percentage declined to a mean of 0.36% in the long deadline
condition (s.e.m. = 0.09). A paired samples t-test revealed that
the percentage of missed deadlines was higher for the short dead-
line condition, compared to long deadline condition t(9) = 4.5,
p < 0.001. In other words, participants as expected were more
likely to miss the deadline in the short DL conditions compared
to the long DL conditions. The hypothetical percentage of missed
deadlines was computed for the RT distributions of the FR blocks
in DR sessions by calculating the percentage of the data above
the RTs corresponding to the two deadlines separately. A mean
of 9.13% of the trials (s.e.m. = 3.02) had RTs above the short

deadline duration (i.e., 800 ms), whereas a mean of 3.26% of the
trials (s.e.m. = 1.15) had RTs above the long deadline duration
(i.e., 1000 ms). Matched-sample t-tests showed that the percent-
age of RTs above the short deadline duration in FR blocks in
DR sessions was significantly higher compared to the percentage
of missed deadlines in the short deadline condition t(9) = 2.89,
p < 0.05. Similarly, the percentage of RTs above the long dead-
line duration in FR blocks in DR sessions was significantly higher
compared to the percentage of missed deadlines in the long dead-
line condition t(9) = 2.81, p < 0.05. These results point at the
effect of response deadlines on RTs.

An additional One-Way repeated measures ANOVA was con-
ducted to compare the effect of four experimental conditions
on overall accuracy, using accuracy data corresponding to RTs
below 800 ms (again due to the procedural censoring factor).
There was a significant effect of experimental condition on accu-
racy, F(3,6) = 22.59, p < 0.001. Tests of six pair-wise comparisons
conducted using Holm-Bonferroni adjusted alpha levels revealed
that, whereas the accuracy in FR sessions (M = 0.96) and FR
blocks in DR sessions (M = 0.94) did not differ significantly from
each other (p > 0.05), both accuracy means differed significantly
from the short (M = 0.90, both ps < 0.001) and long deadline
(M = 0.90, ps < 0.001) conditions. Mean accuracy in the two
deadline conditions did not differ significantly (p > 0.05).

The effect of four experimental conditions on overall accu-
racy were also compared using all data, without excluding those
above 800 ms. There was a significant effect of experimental con-
dition on accuracy, F(3,6) = 8.07, p < 0.001. Tests of six pair-wise
comparisons conducted using Holm-Bonferroni adjusted alpha
levels revealed that, whereas the accuracy in FR blocks in FR ses-
sions (M = 0.94) and FR blocks in DR sessions (M = 0.93) did
not differ significantly (p > 0.05), mean accuracy in FR blocks in
DR sessions differed significantly from both the short (M = 0.90)
and long deadline (M = 0.90) conditions (both ps < 0.001). The
mean accuracy in the two deadline conditions did not differ sig-
nificantly either from each other or from the mean accuracy in
FR blocks in FR sessions (all ps > 0.05). However, when no cor-
rection was applied for multiple comparisons, the mean accuracy
differences between FR blocks in FR sessions and the two separate
deadline conditions reached significance (all ps < 0.05).

We analyzed within block RTs in both deadline conditions to
verify that inattention/fatigue did not set in toward the end of a
5-min block, possibly resulting in slower RTs toward the end of a
block. For this purpose, we first calculated individual participants’
mean RTs for each trial order in separate deadlined blocks across
all DR sessions, for the two deadline conditions. For instance the
mean RT for trial number 14 in the second block of all short
deadlined DR sessions was calculated by taking the mean of all
RTs corresponding to the 14th trial in the second blocks of the
short deadlined DR sessions and so on. For later trials where some
blocks did not have RT data due to unequal number of trials per
block, mean RT was calculated by using available data only. Given
that there were four blocks in each deadline condition per session,
this procedure resulted in four sets of mean RTs per participant,
which were fit by a linear regression using a least-squares method.
It was reasoned that an increase in RTs over the course of a block
of trials should manifest itself as a positive slope of a linear fit
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FIGURE 7 | Response time distributions for FR blocks in FR sessions, FR blocks in DR sessions, Short DR blocks in DR sessions and Long DL blocks in

DR sessions. RT data pooled across participants are plotted either (A) without an upper limit, or (B) with an upper limit of the short deadline duration (800 ms).

to data. A total of eight one-sample t-tests were conducted (four
for each deadline condition) in order to determine whether the
slopes of the linear fits were different from 0. None of the slopes
were significantly higher or lower compared to the test value of 0
(all ps > 0.05), suggesting that RTs did not increase or decrease
toward the end of a test block.

Finally, we wanted to see if error trials were more likely to
occur in the first half or the second half of a DR block, due
to possibly increasing fatigue or inattention. Using the same
method described above, we calculated individual participants’
mean accuracies in the first and the second halves of each block,
separately for the two deadline conditions. Eight paired sample
t-tests were conducted to compare accuracy in the two halves of
each block in the two deadline conditions (i.e., four t-tests for
each condition). None of the differences were significant, suggest-
ing that accuracy did not decline toward the end of a deadlined
test block (all ps > 0.05).

ACCURACY AT DEADLINE
In order to see if it declined to chance level at the deadline, accu-
racy in the last 50 ms RT bin was calculated for both deadline
conditions. Nine participants had valid data (i.e., more than 4
data points) in this RT bin in the short deadline condition, with
a mean accuracy of 78.4% (s.e.m. = 3.6%), whereas 4 partici-
pants had data in the last bin in the long deadline condition with
a mean of 75.6% (s.e.m. = 5.8%). Of those with valid data in
the last bin, no participant’s accuracy fell below 63% in the short

deadline condition, whereas the lowest accuracy in the last bin
was 60% in the long deadline condition. A Wilcoxon signed ranks
test indicated that accuracy in the last RT bin in the short deadline
condition (Mdn = 0.76) was significantly higher than a hypothet-
ical value of 0.5 (Z = 45, p < 0.05), whereas this difference did
not reach significance for the last RT bin in the long deadline
condition (Mdn = 0.78, p > 0.05).

PIECE-WISE LINEAR FITS OF CONDITIONAL ACCURACY CURVES
Figure 8 shows the conditional accuracy curves plotted for each
condition by pooling data across participants. The analysis using
piece-wise linear fits was also based on each participant’s data
expressed as conditional accuracy curves (Figure 9). The knot
locations (defined in terms of RT bins) of the piece-wise linear
fits to these data and the slopes of the best fit lines were cal-
culated using the algorithm described in the Methods Section,
in order to quantify the onset, as well as the rate of a potential
decline in accuracy with time. Figure 9 shows fits to individ-
ual participants’ data. A total of 9 out of 10 participants had
declining accuracies after the inflection point (i.e., knot location)
with time (i.e., negative slope) in the short deadline condition,
whereas 6 had declining accuracies after the inflection point in
the long deadline condition. Two one sample t-tests were con-
ducted in order to compare the slopes of the second line for the
two deadline conditions to the slope of “0” (i.e., no decline in
accuracy with time). Although, the slopes in the short deadline
condition (M = −0.3) differed significantly from 0 [t(9) = 2.84,
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FIGURE 8 | Conditional accuracy curves for the FR blocks in FR

sessions, FR blocks in DR sessions, and DR blocks separately for

the short (A) and long (B) deadlines (800 and 1000 ms,

respectively). The conditional accuracy curves for the two FR blocks
are identical between two columns up to the 15th RT bin. Data were
pooled across participants.

FIGURE 9 | Piece-wise linear fits (red lines) to conditional accuracy for the DR blocks (blue lines with circles) of all participants in the short deadline

(left) and long deadline (right) conditions. Vertical green lines indicate inflection points.
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p < 0.05], this difference failed to reach significance in the long
deadline condition (M = 0.01, p > 0.05). The insignificant dif-
ference remained for the long deadline condition when the data
from participant 9 with a bad fit were not included in the analysis.

TEMPORAL UNCERTAINTY AND CONDITIONAL ACCURACY CURVES
Coefficient of variation values for each participant were calculated
for both TR tasks by taking the average of all CVs for the three tar-
get durations (see Methods Section; Figure 10). Mean CV values
obtained from the first TR task using static stimuli were signifi-
cantly higher compared to CVs obtained from the second TR task
using RDM stimuli [t(9) = 3.97, p < 0.01], which may reflect a
practice effect since the first TR task always used static stimuli
or the specific stimulus effect. A potentially significant correla-
tion between RT and CV was examined. Neither of the CV values
obtained from the two TR tasks correlated significantly with mean
RTs in the FR or DR conditions (all ps > 0.05).

While the positive correlation between CVs in the TR task
with static stimuli and the knot location of the piece-wise fits
to RT data in the short deadline condition reached significance
[r(8) = 0.85, p < 0.01, two-tailed], the same CVs did not cor-
relate with the knot locations in the long deadline condition
(p > 0.05). Conversely, the CVs obtained in the TR task with
dynamic stimuli were positively correlated with the knot location
of the piece-wise fits in the long deadline condition [r(7) = 0.72,
p < 0.05, two-tailed], whereas they did not correlate with those
knot locations in the short deadline condition (p > 0.05). Neither
of the CVs correlated with the slopes of the first or second line of
the piece-wise linear fits (both p > 0.05).

As can be seen in Figure 9, participant number 9 had a visi-
bly bad piece-wise linear fit to his/her conditional accuracy curve
in the long deadline condition. Therefore, the same correlations

FIGURE 10 | CV values obtained in the temporal reproduction task

with two different types of stimuli (red circles for static stimuli &

green triangle for dynamic stimuli) for each subject. Subject 4 did not
participate in the second TR session with dynamic stimuli.

were also calculated by excluding this participant’s data in the long
deadline condition. While the correlation between CVs in the TR
task with static stimuli and the knot location of the piece-wise fits
in the long deadline condition remained insignificant (p > 0.05),
the correlation between CVs in the TR task with dynamic stimuli
and the knot location in the long deadline condition also failed
to reach significance when calculated by excluding this partici-
pant’s data. Excluding this participant’s data also did not result
in a significant correlation between CVs and the slopes of the
first or second line of the piece-wise linear fits to the long dead-
line condition (all ps > 0.05). None of these results support the
optimal performance predictions, since we expected participants
with higher CVs to start reducing their accuracy earlier (under
the threshold collapsing assumption). If anything we observed the
opposite relationship with the CVs in TR task with static stim-
uli in the short deadline condition, and the CVs in TR task with
dynamic stimuli in the long deadline condition. When the data
only from the participants with a negative slope in the second line
of the piece-wise linear fits were taken into consideration, none of
the correlations between either of the CVs and the knot locations,
or between the CVs and the slopes of both the first and second line
of the piece-wise linear fits reached significance (all ps > 0.05).

Even though we had a minimum number of data points per RT
bin used in forming the conditional accuracy curves, investigating
the declining accuracy using binned RTs may be misleading in the
sense that some bin accuracies calculated with fewer yet highly
accurate/inaccurate trials may be artificially inflated / deflated.
In other words, the binning methodology may fail to accurately
represent the dynamics of a declining accuracy with time, since
it entails estimating accuracies for a specific time period from
the average of sometimes a very limited number of data points.
Therefore, we also calculated peak accuracy by taking the cumu-
lative average of accuracy with increasing time (i.e., RT), and
correlated the location of these peaks in time with CV values.
This was achieved by first sorting RTs for each trial in increas-
ing order and then forming an “accuracy vector” by coding 0 for
error trials and 1 for correct trials corresponding to each RT value.
Cumulative accuracy was then calculated for each trial by taking
the average accuracy of all trials with RTs at and below that trial,
which formed a cumulative average accuracy curve. Consistent
with the findings reported above, the RTs at which the cumulative
average of accuracy peaked did not correlate significantly with the
CVs estimated from either TR task (both ps > 0.05). These results
further supported the above-mentioned results obtained by using
the RT binning approach, further suggesting that even if partic-
ipants collapsed their decision thresholds, they did not take into
account their endogenous timing uncertainties.

Finally, in order to see if there was a bias toward over- or
underestimating the durations/deadlines additional analyses were
conducted. Normalized mean reproduction durations of all par-
ticipants were first calculated by dividing the mean reproduction
duration by the target duration. This was done separately for
all three durations (1–2.12–4.24 s) tested in the two TR ses-
sion types (static or dynamic stimuli). Six one-sample t-tests
were conducted using “1” as test value for accurate normalized
performance. Only the 1 s test duration in the dynamic stim-
ulus condition (M = 1.31, s.e.m. = 0.0.06) was systematically
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overproduced by the participants [t(8) = 4.73, p < 0.001], sug-
gesting that subjects tended to underestimate 1 s of dynamic
stimulus presentation. This result suggests that if thresholds did
in fact collapse with time, this collapse may have started declining
later than optimally, since participants were underestimating the
deadlines. In order to test this possibility, the correlation between
the mean reproduction duration of 1 second (separately in the
TR tasks using static & dynamic stimuli), and the knot location,
as well as the slope parameter of the conditional accuracy curves
was calculated. This procedure was also repeated by excluding the
long deadline data of participant ID 9. None of these correlation
coefficients reached significance (all ps > 0.05).

DRIFT-DIFFUSION MODEL SIMULATIONS
Since we observed accuracy reduction within trials for some par-
ticipants in DR sessions, it is important to address whether mod-
els with fixed parameters within trials can account for this pattern.
Thus, we tested if observed reduction in accuracy as a function of
RTs could be due to factors other than collapsing thresholds. For
this purpose, individual participants’ data between FR blocks in
DR sessions were fit by the extended DDM (i.e., allowing for inter-
trial variability parameters, all variability parameters > 0, and also
allowing for starting point bias) using the diffusion model anal-
ysis toolbox (DMAT) (Vandekerckhove and Tuerlinckx, 2008).
These parameters were then averaged across participants in order
to obtain a representative set of parameters that could be used for
DDM simulations to follow.

The following mean parameters were obtained; decision
boundary (a) = 0.1214, non-decision related delays (Ter) =
0.4419, drift rate variability (Var(v)) = 0.1922, starting point
(z) = 0.0608, starting point variability (Range(z)) = 0.0547,
non-decision time variability (Range (Ter)) = 0.1668, and drift
rate (v) = 0.4447. Data from FR blocks in DR sessions were
used instead of FR blocks in FR sessions to estimate the DDM
parameters because they represent performance that is closer to
steady-state.

Using these DDM parameters, we simulated three sets of 106

data points using DMAT’s simulation feature, in which either
of the threshold (a), drift rate variability (Var(v)), or the start-
ing point variability (Range(z)) parameters were increased or
decreased by 10 and 20% (depending on the condition; see
Figure 11). Therefore, each set contained five levels of its cor-
responding parameters. This procedure aimed to investigate if
changes unrelated to within-trial threshold collapsing might also
lead to decreasing accuracy levels with slower RTs. These specific
parameters were chosen for incrementing/decrementing because
large/small values of these parameters are known to lead to
longer/shorter RTs for incorrect choices (Ratcliff and Rouder,
1998; Ratcliff and McKoon, 2008). Specifically, larger values of
threshold and drift rate variability parameters lead to slower error
RTs, whereas a larger variability in starting point should present
itself as faster RTs for error trials (Ratcliff and Rouder, 1998;
Ratcliff and McKoon, 2008). Such response patterns formed by
slower responses for error trials compared to correct ones can-
not be explained by the pure DDM when it is unbiased toward
one threshold over the other (Laming, 1968). Importantly for our
purposes, if error trials are slower than correct trials, this pattern

automatically implies a declining conditional accuracy curve. In
other words, the decline in accuracy observed in our data may not
necessarily be a behavioral manifestation of a collapsing decision
threshold (a), but instead may result from changes in the values of
the other parameters such as the drift rate variability (Var(v)) or
an overall reduction in decision threshold (a) that stays constant
within a trial. Figure 11 shows the results of these simulations by
plotting accuracies as a function of corresponding RTs (using a
bin size of 0.05 s).

Conditional accuracy curves based on simulated data showed
a steadily declining accuracy with increasing RT (Figure 11).
Moreover, although the rate of this decline is higher for a lower
threshold parameter, a similarly increasing rate of decline is
observed for higher levels of the drift rate variability parameter as
well, with no modification of the threshold or any other param-
eter within a trial. Additionally, increasing or decreasing the
starting point variability had no discriminable effect on the rate of
decline in accuracy with time. These results suggest that, impor-
tantly, decreasing the constant decision threshold (i.e., without
the need for within trial modulation) or increasing the variability
in drift rate could underlie decreasing accuracy toward a deadline.

DISCUSSION
Many studies using 2AFC tasks have focused on the optimality
of decisions in free response paradigms (e.g., Bogacz et al., 2006,
2010; Simen et al., 2009; Starns and Ratcliff, 2010; Balci et al.,
2011b). Some of these studies showed that with enough training
human participants can optimize the speed-accuracy tradeoff in
their decisions by adopting RR-maximizing decision thresholds.
When response deadlines are imposed in these tasks, reward max-
imization instead requires the decision-maker to collapse decision
thresholds within a trial such that at the time of deadline, they
meet at the starting point of the evidence accumulation process.
This is an adaptive process as it secures at least a 50% chance
that the reward will be obtained instead of earning nothing if
the decision-maker is late. Frazier and Yu (2008) showed the
relevance of timing uncertainty to the parameterization of this
adaptive within-trial threshold crossing process. Participants with
higher timing uncertainty should start collapsing decision thresh-
olds earlier to maximize reward. Thus, reward maximization in
these tasks entails factoring timing uncertainty into decisions in a
normative fashion.

To this end, previous research has shown that humans and
non-human animals are able to take normative account of their
endogenous timing uncertainties in both temporal and non-
temporal decision making tasks (for review see Balci et al., 2011a).
This prediction was tested in the current study by examining con-
ditional accuracy curves and evaluating how their shape depends
on deadlines and participants’ endogenous timing uncertainty.
Although our results showed that accuracy decreased with time
toward the deadline for many participants, this rate of decline was
much lower than expected from an optimal decision-maker and
did not correlate with measured levels of timing uncertainty. In
contrast to optimal performance predictions, the timing of the
onset of decline in accuracy increased rather than decreased with
higher levels of timing uncertainty in the short deadline condi-
tion, when this uncertainty was quantified using a static visual
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FIGURE 11 | Conditional accuracy curves gathered from simulated

data. RT bin size of 50 ms was used for plotting. Three parameters were
systematically modified by increasing and decreasing their values by 20

and 10%. The parameters manipulated were (A) threshold (top panel), (B)

drift rate variability (middle panel), and (C) starting point variability (bottom
panel).

stimulus, and also in the long deadline condition when it was
quantified using a dynamic visual stimulus. It is possible that
our analytical approach, i.e., using linear fits to accuracy levels
of binned RT data, was not sensitive enough to capture such
relations and might be vulnerable to artifacts depending on the
number of data points included per bin. However, this relation
did not hold even when the onset of this decline in accuracy
was characterized by the location of peak accuracy levels using a
non-binning approach. Overall, these results suggest that there is

no relation between decreasing accuracy and timing uncertainty.
Importantly, however, our analyses showed that slopes were less
negative in the long deadline condition compared to the short
deadline condition, suggesting that interval timing still had an
effect on participants’ choice behavior.

There are at least three possible explanations for sub-optimal
behavior in the deadline blocks. First, participants may have kept
favoring accuracy over reward rate throughout the experiment,
which has been previously reported (e.g., Maddox and Bohil,
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2004; Bogacz et al., 2006, 2010; Balci et al., 2011b). Thus, accuracy
bias could have prevented within trial modulation of thresholds
to reduce overall error rates. This possibility relies on the implicit
assumption that errors are subjectively more costly than missed
trials. Second, participants may have started collapsing thresholds
later than the optimal case due to underestimation of the dead-
line. In this case, accuracy would remain above the chance level
at the time of response deadline. However, our analyses did not
support this possibility. Third, sub-optimal decision making may
be caused by mechanistic limitations at the neuronal level which
may not allow for within-trial decision threshold modulation, at
least for decisions made in less than one second. This is a plausi-
ble explanation of our results, given that the cognitive cost (i.e.,
executive load) of modulating the value of the decision thresh-
old in real-time may outweigh its benefits in terms of increasing
the overall reward attained throughout a session. Importantly,
participants differed in terms of decreasing and increasing accu-
racy with time (see Figure 9, where some participants’ accuracies
increased rather than decreased toward the deadline), which
could again be explained by individual differences in bias toward
accuracy, as opposed to maximizing reward.

Slower RTs on error trials are commonly found in 2AFC
research with free responding (Ratcliff and Rouder, 1998; Ratcliff
and McKoon, 2008). These patterns can be accounted for by the
extended DDM by allowing the drift rate to vary between trials.
Drift variability enables the extended DDM to account for slower
average error RTs than correct RTs. Inflation of this variabil-
ity parameter (in addition to decreasing the constant threshold)
should therefore produce decreasing accuracy with slower RTs
in conditional accuracy curves, even in the absence of collaps-
ing thresholds within a trial. Our simulations confirmed that
accuracy can decline steadily with RT without any accompanying
threshold collapse. We have shown that, while a concomitantly
decreasing threshold parameter yields an additionally higher rate
of decline in accuracy, a similar effect is observed by increas-
ing drift rate variability across trials, whereas modifying starting
point variability had no such effect. This lack of a visible effect
of the starting point parameter on the rate of decline in accu-
racy with time was expected, given that increasing this parameter
results in faster error RTs, which should not necessarily trans-
late into slower error RTs when the same parameter is decreased.
Overall, these results suggest that increasing drift rate variability
or setting the constant decision threshold to a lower value might
be a way to mimic the effect of collapsing thresholds on accuracy
without actually collapsing them.

Finally, it is also important to note that a cross-over between
faster and slower error responses has been suggested depending
on the difficulty of the task (see Luce, 1986). Namely, harder tasks
(i.e., higher error rates) have been shown to lead to slower RTs
for error trials, whereas participants had faster error RTs in eas-
ier tasks (e.g., Ratcliff and Rouder, 1998). It is possible that our
task was a relatively easy one, given the low error rates observed
(Figure 6), the small number of trials in the last RT bin of the
conditional accuracy curves (Figure 9), and a relatively high esti-
mated drift rate (i.e., 0.4447) (see Section Drift-Diffusion Model
Simulations). However, we still observe slower RTs for error trials,
as can be seen in Figure 8. Therefore, studies using an easier task

still may not observe a more pronounced decline in accuracy with
time, but this remains an open question.

Future studies should increase the cost of missing a deadline
by explicitly adding a penalty. Under such payoff structures, one
might be more likely to observe threshold collapsing. However,
note that in these cases the optimal threshold collapse trajectories
will also change (possibly meeting prior to the response dead-
line) due to the explicit penalty for late responses. Additionally,
speed-accuracy tradeoff functions in tasks that use response signal
methodology do not exhibit reduction in accuracy with increas-
ing lags (e.g., Wickelgren, 1977). On the other hand, in our
free response paradigm, such decline in accuracy was apparent
in conditional accuracy curves. Response signal paradigms typ-
ically employ a single signal (or a series of equally distributed
signals) after which the participant is instructed to respond as
soon as possible, ensuring that there are no fast guesses, in addi-
tion to making within trial strategic manipulation of decision
making parameters harder (Heitz, 2014). This difficulty is due
to the fact that, by the time the response signal is given, sub-
jects need to make a choice using the already accumulated (and
potentially partial) evidence. This approach contrasts with the
one we have used in a number of ways. First, subjects do not nec-
essarily need to keep track of the time to respond in response
signal tasks, whereas in our experimental design, participants
needed to constantly rely on endogenous markers of the passage
of time in order to maximize reward, which is likely more taxing
in terms of information processing throughout the decision pro-
cess. In turn, the relatively higher amount of cognitive resources
available to the decision maker in the response signal paradigm
might present itself as lower variability in drift rate, which as
we showed can underlie declining accuracy with time. Secondly,
the response signal paradigm allows post-signal accumulation
of evidence to a certain extent, whereas our methodology does
not permit it at all. As a result, one might expect that, even
if participants were able to modulate thresholds within a trial
(which we show here to not be the case), giving the chance to
accumulate more evidence after a response signal might obscure
a decline in accuracy with slower RTs. Further empirical work
is needed to elucidate the possible sources of these differences
between the two experimental paradigms, although the similar-
ity of the implementation of SAT by decision makers has been
questioned due to fundamental differences in the two approaches
(see Heitz, 2014).

Overall, our empirical results do not support the optimal per-
formance predictions regarding within-trial collapsing of thresh-
olds under response deadlines. A slight decline in accuracy was
observed for decisions made near the response deadlines; how-
ever, this decline never reached chance level, which is predicted
by optimal threshold collapse. Moreover, the observed decline in
accuracy was not related to the level of endogenous timing uncer-
tainty in the expected direction, and it could be accounted for by
DDM parameters that are constant within trials.
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Copyright © 2014 Karşilar, Simen, Papadakis and Balci. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | Decision Neuroscience August 2014 | Volume 8 | Article 248 | 18

http://dx.doi.org/10.3389/fnins.2014.00248
http://dx.doi.org/10.3389/fnins.2014.00248
http://dx.doi.org/10.3389/fnins.2014.00248
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive

	Speed accuracy trade-off under response deadlines
	Introduction
	Materials and Methods
	Participants
	Apparatus
	Stimuli and Procedure
	Free response dot motion discrimination task
	Deadlined dot motion discrimination tasks
	Temporal reproduction task - static stimuli
	Temporal reproduction task-RDM stimuli

	Data Analysis
	Quantifying declining accuracy with time
	Optimal threshold collapse simulations


	Results
	Accuracy and Response time in the Free Response Conditions
	Effect of Deadlines on Response time and Accuracy
	Accuracy at Deadline
	Piece-Wise Linear Fits of Conditional Accuracy Curves
	Temporal Uncertainty and Conditional Accuracy Curves
	Drift-Diffusion Model Simulations

	Discussion
	Author Note
	Acknowledgments
	Supplementary Material
	References


