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Performance on serial tasks is influenced by first- and higher-order se-
quential effects, respectively, due to the immediately previous and ear-
lier trials. As response-to-stimulus interval (RSI) increases, the pattern of
reaction times transits from a benefit-only mode, traditionally ascribed
to automatic facilitation (AF), to a cost-benefit mode, due to strategic
expectancy (SE). To illuminate the sources of such effects, we develop a
connectionist network of two mutually inhibiting neural decision units
subject to feedback from previous trials. A study of separate biasing
mechanisms shows that residual decision unit activity can lead to only
first-order AF, but higher-order AF can result from strategic priming me-
diated by conflict monitoring, which we instantiate in two distinct ver-
sions. A further mechanism mediates expectation-related biases that grow

*Juan Gao, the corresponding author, is now at the Department of Psychology,
Stanford University, Stanford, CA 94305-2130.

Neural Computation 21, 2407-2436 (2009) © 2009 Massachusetts Institute of Technology



2408 J. Gao et al.

during RSI toward saturation levels determined by weighted repetition
(or alternation) sequence lengths. Equipped with these mechanisms, the
network, consistent with known neurophysiology, accounts for several
sets of behavioral data over a wide range of RSIs. The results also suggest
that practice speeds up all the mechanisms rather than adjusting their
relative strengths.

1 Introduction

Even when subjects are instructed that stimulus sequences are randomly
ordered, their reaction times (RTs) and error rates (ERs) on serial RT tasks
typically depend on previous trials in a systematic manner. This sequential
effect has been widely tested under different conditions and with vari-
ous auditory and visual stimuli (Soetens, Boer, & Hueting, 1985; Sommer,
Leuthold, & Soetens, 1999; Cho et al., 2002). Most of the literature on such ef-
fects concerns two-alternative forced-choice (2AFC) tasks, and stimulus se-
quences are represented using repetition (R) and alternation (A) to indicate
whether a given trial is a repetition or alternation of the previous one. We
follow this convention, denoting the two response choices by “1” and “2.”

Sequential effects can be categorized as first order (caused by the immedi-
ately previous trial) or higher order (caused by trials earlier in the sequence).
In 2AFC tasks, sequential effects are also found to vary systematically with
response-to-stimulus interval (RSI), the delay between response and stim-
ulus onset in the following trial (Kirby, 1972; Soetens et al., 1985). For short
RSIs, one-sided patterns are observed, in which the response in the current
trial is faster following certain sequences relative to others. For first-order
effects, repetitions are faster than alternations, while for higher-order ef-
fects, responses after repetitions are faster regardless of whether the current
trial is a repetition or an alternation. For example, after the sequence 1-1-1
(or 2-2-2), the response to another 1 or 2 is faster than that after 1-2-1. This
one-sided effect, which reduces mean RTs, is called a benefit-only pattern
and is ascribed to automatic facilitation (AF).

In contrast, for long RSIs, first-order alternations are faster than repe-
titions, and higher-order effects are more complicated. For example, after
a sequence of 1’s, the subject’s response to another 1 is faster, while the
response to a 2 is slower. Following the alternating sequence 1-2-1-2-1, the
response is faster to a 2 and slower to a 1. This cost-benefit phenomenon is
believed to be caused by strategic expectancy (SE; previously called subjec-
tive expectancy; see Bertelson, 1961; Laming, 1968; Kirby, 1976). It implies
that RTs tend to be shorter if the current stimulus confirms the subject’s
expectation and longer otherwise. Expectation of a pattern even if the se-
quence is random is also known as the gambler’s fallacy (Jarvik, 1951;
Tversky & Kahneman, 1974).

The transition from AF to SE occurs at a critical response-to-stimulus in-
terval (RSI) above 100 ms, although the value differs significantly from
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experiment to experiment. For example, Cho et al. (2002) reported se-
quential effects dominated by first-order AF and higher-order SE for RSI
= 800 ms. Relative strengths of AF and SE are also affected by practice and
stimulus-response compatibility; specifically, practice weakens AF more
than it does SE (Soetens et al., 1985), and with an incompatible stimulus-
response mapping, the transition from AF to SE occurs later (at 250-500 ms
RSI) (Soetens et al., 1985; Jentzsch & Sommer, 2002).

Although no SE effect has been explicitly shown in RTs or ERs at short
RSIs, some neurophysiological data do provide evidence of expectancy.
An electroencephalogram (EEG) study (Sommer et al., 1999) shows a clear
sequential effect with an SE pattern in the P300 response, an event-related
potential (ERP) component peaking at approximately 300 ms after stimulus
onset, under both long (500 ms) and short (40 ms) RSIs (for longer RSIs, the
amplitude is much larger). Further studies also identify specific components
of P300 that are sensitive to sequential effects (Jentzsch & Sommer, 2001,
2002), although more detailed studies are needed to be conclusive.

Sequence-related activity has been observed in the prefrontal cortex
(PFC), among other areas. In particular, Huettel, Song, and McCarthy (2005)
demonstrated PFC activation after sequence violation and found that acti-
vation levels increase as the sequence preceding violation lengthens. (Sub-
regions of PFC that are most sensitive to specific sequence patterns were
also identified, although the time resolution is too low to reveal dynami-
cal details.) This provides evidence that “higher-order” brain regions can
develop expectancy by accumulating memory of past trials and register
violations when an expected pattern fails to appear.

Previous modeling studies (Squires, Wickens, Squires, & Donchin, 1976;
Soetens, Deboeck, & Hueting, 1984; Cho et al., 2002; Jones, Cho, Nystrom,
Cohen, & Braver, 2002) have succeeded in matching specific experimental
observations, but none has addressed sequential effects over a wide range
of RSIs as in the experiment of Soetens et al. (1985) or attempted to ex-
plain sequential effects in different experiments or elucidate their neural
mechanisms. Building on an established connectionist model of decision
making (Usher & McClelland, 2001), this article addresses this omission
by implementing three biasing mechanisms: residual activity from the im-
mediately previous trial that influences the initial condition in the current
trial, expectation-based top-down bias, and bias due to conflict monitoring.
Before combining these mechanisms to match various data, we separate
them in order to probe their individual effects and explore which mech-
anisms are most critical to particular observations. We find that varied
transitions from AF to SE under different experimental conditions can be ex-
plained by different timescales in decision-layer dynamics and that speed-
ing up all the mechanisms can account for changes in RT patterns due to
practice.

We follow traditional use, taking automatic facilitation (AF) to refer
to faster responses to repetitions (in first-order AF) and the benefit-only
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pattern in RTs (higher-order AF), and strategic expectancy (SE) to refer to
faster responses to alternations (first-order SE) and the cost-benefit pattern
(higher-order SE). Similar terms are used in the discussion of sequential
effects in error rates and neural activities.

This article is organized as follows. In section 2, we introduce the con-
nectionist network and augment it in section 2.1.2 with a model for residual
activity due to previous trials. Sections 2.1.3 to 2.1.4 develop detailed top-
down biasing mechanisms related to expectancy and conflict monitoring,
and two models of the biasing effects are advanced for the latter. Simulation
methods and parameter choices are reviewed in section 2.2. Predictions of
the models are then described in section 3, in which we investigate the ef-
fects of each mechanism individually. We show in section 3.1.1 that residual
activity alone cannot produce higher-order AF and in sections 3.1.2 and
3.1.3 that higher-order AF and SE behavioral effects are accounted for by
top-down biasing mechanisms. We focus on sequential effects on reaction
times in this article but briefly address the effects of noise on error rates
in section 3.1.4. The effects of the combined biases are presented in sec-
tions 3.2 to 3.3, where we also address the effects of practice. In section 4,
we summarize, note some open questions, and comment on possible neural
mechanisms.

2 Methods

In this section we develop a basic mathematical model that encompasses
decision dynamics and propose biasing mechanisms that account for AF
and SE effects. We start by briefly reviewing the leaky competing accumu-
lator model and then, drawing on preliminary analyses of its behavior and
on prior work, propose adjustments to initial conditions and input currents
to the accumulators based on prior responses.

2.1 A Computational Model of Decision Making with Biasing Mech-
anisms. Figure 1A summarizes the overall model architecture. Stimulus
inputs feed to a decision layer containing competing neural units that race
toward a decision criterion or threshold (see Figure 1B). The current trial’s
status as a repetition or alternation is combined with that of previous trials
in short-term memory modules (green and yellow units). Response conflict
over recent trials is similarly maintained as in the conflict-based mecha-
nism of Botvinick, Braver, Barch, Carter, and Cohen (2001) (brown unit).
We extend that work by incorporating temporal dynamics in the biasing
mechanisms during RSI. These “higher” modules then influence the deci-
sion or sensory layers in subsequent trials by excitatory or inhibitory feed-
back. We also include the effects of decaying neural activity after reaching
threshold (see Figure 1C), as revealed in both experiments and modeling
(e.g., Roitman & Shadlen, 2002; Lo & Wang, 2006).
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Figure 1: Schematic diagram of the models and neural dynamics during deci-
sion making. (A) Sensory-layer outputs enter a decision-making layer contain-
ing competing, mutually inhibited units that accumulate evidence for choices 1
and 2. Biasing modules temporarily store memories of past repetition (Mg) or
alternation (M) sequences, and response conflict (C) during evidence accumu-
lation. Filled triangles (circles): excitatory (inhibitory) connections. Inhibition
on decision units (model 1) or sensory units (model 2) depends on conflict level
(see the text for details). (B) Time course of neural activities in decision layer
after stimulus onset at time 0: here choice 1 is made, and z denotes the de-
cision threshold (dash-dotted). (C) Representation of neural dynamics on the
two-dimensional decision space. Solid black (gray) curves starting at the circle
denote trajectories of neural dynamics with x; (x;) winning, and dashed lines
show post-decision trajectories; thresholds shown dash-dotted.

2.1.1 Decision Layer Model. We employ the connectionist model of Usher
and McClelland (2001), in which the activaties x;(t), x,(f) of two decision
units are described by stochastic differential equations coupled by mutual
inhibition (see Figure 1A). Each unit has overall time constant z., a passive
leakage term of strength k, an input p; representing the stimulus, and an in-
dependent and identically distributed gaussian noise process 7;. Inhibition
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of strength B acts via a sigmoidal function f(x;) = 1/[1 + exp(—G(x; — d))],
where G is the gain and d is a half-activity offset:

d

r ot = —kxn = Bf (x2) + o1 + om0, (21a)
d

rcg = —kxy — Bf (1) + p2 + oma(D). (2.1b)

This formulation is equivalent to a firing rate model via a linear
transformation (Grossberg, 1988; Brown et al., 2005), and reductions to
one-dimensional drift diffusion and Ornstein-Uhlenbeck systems can be
made in appropriate parameter ranges (Brown & Holmes, 2001; Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006).

Under the free response protocol, a decision is made when either unit first
reaches a preset activity threshold x; = z. The decision time is the time taken
for that unit’s state to reach threshold from its initial condition. Model 2.1a
and 2.1b captures a variety of experimental observations, is neurophysi-
ologically plausible, and offers a framework to which representations of
other brain areas can be added (Botvinick et al., 2001). In particular, it has
previously been used to model sequential effects (Cho et al., 2002). Unless
otherwise noted, we henceforth adopt the parameters in Cho et al. (2002)
and Usher and McClelland (2001): t. = 0.1, k =0.2,8=0.75,G =4,d =
0.5, po = 0.35, z = 1.05, setting p; = 0.5 + pp when stimulus i is shown and
pi = 0.5 — pp when it is not. Here py is the stimulus sensitivity, which may
differ in different situations even for the same subject and same stimulus.
Further comments on 7. appear in section 2.2.

2.1.2 Post-response Residual Activity. Physiological studies such as
Roitman and Shadlen (2002) show that neurons that accumulate evidence
during decision tasks experience rapid decay, or inhibitory suppression, of
activity following responses (see Lo & Wang, 2006, for a related modeling
study). The amount by which activities decay in equations 2.1 during the
RSI can influence the following trial by changing the initial condition before
integration begins (see Figure 1C).

The analysis in section 3.1.1 and the supplementary materials' shows
that activities x;(t) decay from their states at the previous response toward
a stable fixed point. As shown there, several manipulations have been tried
to match typical RTs in Soetens et al. (1985), one of which is to increase the
leak and inhibition parameters during RSI. This mechanism, consistent with
findings of Roitman and Shadlen (2002), effectively applies global inhibition
during RSI to reset the accumulators more rapidly. Using the values k = 4

ISupplementary materials are available online at http:/ /www.mitpressjournals.org/
doi/suppl/10.1162 /neco.2009.09-08-866.
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and B = 15 throughout the RSI, we find that apart from a brief (<50 ms)
postresponse transient in which the losing unit on the last trial decays, the
resulting initial conditions can be approximated by

__RSI RSI
X0 =05z¢e" = +% and xjo=—15ze~ +X. (2.2)

Here x; = x, = X is the intertrial equilibrium state, unit i is the winner,
unit j the loser, z the decision threshold, and the timescale 7, = 50 ms.
This provides a simplified description of residual activity that will be used
below, along with biases due to response conflict and expectation.

2.1.3 Biases from Expectations. We assume that strength of expectation is
determined by memory of the previous sequence with more recent trials
playing a more important role. Specifically we define memories of repetition
and alternation over trials as follows:

Mgr(n)=ArMr(n — 1) + Ig(n — 1), (2.3a)
Mu(n) = AaMa(n — 1) + La(n — 1), (2.3b)
where

Inrn — 1) = ! 1, ifSn—1)=Sn-2), 243)

0, otherwise;

I 1 0, ifSn—1)=Smn-2), (2.4b)
n—1)= -
A 1, otherwise,

and S(n — j) is the stimulus in the (1 — j)th trial. Similar definitions ap-
peared in Cho et al. (2002).

The discrete linear mapping of equations 2.3 and 2.4 is equivalent to a
low-pass filter with timescale 1/(1 — A), where A = Ag or A 4 isa constantin
the range from 0 to 1. The process mimics decaying memories of alternation
and repetition in the stimulus history and can also be interpreted as comput-
ing time-discounted fractions of alternations and repetitions. Control biases
from higher-level units, assumed proportional to the memories of alterna-
tion My or repetition Mg, will be used to bias the nth trial (cf. Figure 1A).

Huettel, Mack, and McCarthy (2002) show that cross-trial dynamics ap-
proach saturation after a shorter sequence of repetitions relative to alter-
nations, implying a faster decay rate for repetitions: Ag < A 4. This is true
on both neural and psychometric levels, as confirmed by reanalysis of RTs
from Cho et al. (2002) and Soetens et al. (1985) (see Figure 2). Consistent
with this, we set Ag = 0.4 and A 4 = 0.6, retaining the mean value 0.5 used
in Cho et al. (2002).
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Figure 2: Different decay rates for continuation of repetitions and alternations.
Effects of pure repetition (A) saturate after shorter sequences than those of pure
alternation (B), as shown by reanalysis of mean RT data in Cho et al. (2002) and
Soetens et al. (1985), with authors’ permissions. Data identified by key.

Figure 2 illustrates two further facts: (1) mean RTs in Cho et al. (2002)
(squares) are longer than those in Soetens et al. (1985) (triangles); and (2)
repetitions are faster in the former, although RSIs are long for both data sets
(800 ms and 1000 ms, respectively). We believe the first is because the task
in Cho et al. (2002)—discrimination between capital and lowercase o’s—is
harder than detecting lighted LEDs as in Soetens et al. (1985). The second
fact, to be addressed in section 3, provides evidence of first-order AF and
higher-order SE in the data for an 800 ms RSI, contrary to the prior sugges-
tion of a critical transition at 100 ms RSI (Soetens et al., 1985).

Short-term memories for repetition and alternation are assumed to work
independently and in parallel as in Cho et al. (2002), and we assume a linear
relationship between memory and biasing strength B; , at the nth trial:

B, = ygM;(n), wherei = Ror A, (2.5)

where Mg and M, are the repetition and alternation memories of equa-
tions 2.3 and y3 is set to 0.1 throughout. We additionally assume that the
biasing strength grows over time before each trial following the delayed
exponential equation:

Biu[1—exp (—82=M)], if RSI > Ty,

] (2.6)
0, otherwise.

bi,n(RSI) = {
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This implements the intuition that time is needed for the cortex to initi-
ate top-down control. The neurophysiological data of Sommer et al. (1999)
indicate that SE-related neural activity occurs for RSIs as low as 40 ms,
but with amplitudes smaller than those for long RSIs. Guided by this, we
selected a latency of Tp = 30 ms to allow AF to dominate for very short
RSIs. In the supplementary materials, it is shown that the resulting model
adequately reproduces observed P300 neural activity patterns thought to be
related to expectation. A sigmoidal rise in b; , with RSI could also capture
delayed growth, and such a smooth function, also specifiable by two pa-
rameters, may derive more naturally from neural dynamics, although we
do not expect the precise form to affect our results.

We further suppose that after longer sequences of repetitions or alterna-
tions, subjects need less time to develop expectations for the coming trial;
hence, PFC activity develops more rapidly during the RSI in these cases.
This is modeled by letting the timescale 7 in equation 2.6 depend linearly
on memory M;(n) or, equivalently, on the saturation value B; ,.. Specifically,
7 attains a maximum t = 7o & 600 ms for B;, = 0 and approaching r =0
after an infinite sequence: v = 7p(1 — B; /B), where B = 0.25 is the maxi-
mum values y5 M achieved after arbitrarily long strings of R’s or A’s. The
final update rule is therefore

SI— .
Bi,n [1 —exp <_ﬁ)] , 1RSI > T, '

0, otherwise

b; «(RSI) = { (2.7)

This development of expectation-related bias b; , during RSI following

each trial can be approximated by a linear leaky integrator equation,

db;
dt

1
=——b; +aB;, where i=RorA,
T

and « is a scaling constant. The decrease in 7 for larger B; can result from a
saturation factor, as in

dbz‘ bi dbi 1
R b)aB; = rr _Eb’ +aB;, (2.8)

where 7, = 7/(1 4+ aB; 1), implying smaller 7, for larger B;. Equation 2.8 has
the same form as the dynamical equation for a saturating synaptic gating
variable, such as NMDA-mediated receptors, which have been used in
biophysical modeling of prefrontal cortical microcircuits (Wang, 1999).

We assume that the biases stop increasing when the next stimulus ap-
pears and remain fixed for its duration, much as short-term memories can be
maintained by line attractors (Seung, 1996; Machens, Romo, & Brody, 2005).
If biases continued increasing regardless of stimulus onset, they would
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saturate even for short RSIs, and sequence-related neural activities would
be similar for both short and long RSIs, provided that the overall RT plus
RSI duration is sufficient. This conflicts with the finding in Sommer et al.
(1999) that P300 activity is significantly lower for short RSIs. Truncation of
the development of neural activity can be understood as occurring when
attention shifts to the stimulus at trial onset, establishing persistent activity
in the PFC, or as due to saturation of synapses (cf. equation 2.8).

Finally, the top-down control mechanisms that mediate expectation are
assumed to send excitatory bias +B; , to the decision unit that would con-
firm the expectation and inhibitory bias —B; , to the one that violates it.
Thus, for previous stimulus 1, in the next trial, expectation of repetition
sends positive bias to unit 1 and negative bias to unit 2, whereas expecta-
tion of alternation sends positive bias to 2 and negative bias to 1. Bias is
added to the input currents representing the stimuli, so that the dynamics
of the nth trial with expectation-related bias alone is given by

d

rcdi; =—kx; — Bf(%2) + p1 + bru(RST) — b4 o(RST) + o1, (2.92)
d

rcﬁ =—kx, — Bf(x1) + p2 — bR w(RSI) + b4 u(RSI) + 015, (2.9b)

2.1.4 Biases Due to Response Conflict Monitoring. It has long been rec-
ognized that conflict is an important feature of cognitive processing (e.g.,
Berlyne, 1960), and computational modeling work has suggested that re-
sponse conflict monitoring mechanisms may play an important role in sig-
naling the need for cognitive control (Botvinick et al., 2001).2

In connectionist networks, conflict is typically quantified as the inte-
grated product of activities in the competing decision units:

tria

E,= lf(xl(t)) f(xa(t))dt, (2.10)

implying that high conflict follows trials in which both units are active
and decision times are long. This formulation of strategic priming was
introduced in Botvinick et al. (2001) and Jones et al. (2002) via the updating
rule

Cn = )Mcn—l + (1 - )\)aEnfh (211)

in which the decay rate A lies between 0 and 1, and & < 0 denotes inhibitory
bias. Note that conflict C,, in the nth trial does not affect that trial but

2Gome aspects of this view have recently been questioned (Burle, Allain, Vidal, &
Hasbroucq, 2005; Burle, Roger, Allain, Vidal, & Hasbroucq, 2008).
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influences the (1 + 1)st trial. Considering residual activities, it follows from
equations 2.1 to 2.2 and 2.10 to 2.11 that if each decision unit is alternately
stimulated (alternating trials), conflict levels will be higher than the case
where only one is active (repetition trials).

Direct calculations using equations 2.10 and 2.11 and the parameters of
Botvinick et al. (2001) and Jones et al. (2002) reveal that strategic priming
strengths decrease as RSIs increase, because neural activities have more time
to decay for longer RSIs, producing lower conflict levels. Plotting priming
strengths versus different RSI values reveals almost perfect exponential
decay during RSI, the timescale of which depends on priming strength
in an approximately linear manner. (See the supplementary materials for
details.)

Motivated by these observations, we simplify the conflict-based biasing
mechanism as follows. Noting that adding the same amount of conflict in
all conditions does not change sequential effect patterns, we assume that
conflict monitoring is engaged only following alternations. Rather than
compute the integral, equation 2.10, after each trial, we parallel the discrete
formulation of equation 2.5 by modeling inhibition due to strategic priming
during the nth trial as

RSI

pu(RSI) = —Pye” 7, (2.12)

where the minus sign means it is inhibitory and P, is the predecay priming
strength at the previous response whose value is proportional to the prior
alternation content in the stimulus sequence:

P, = yp Mu(n), (2.13)

with yp = 0.3 throughout and Mx(n) being the alternation memory after
the (n — 1)st response (cf. equation 2.3b). The time constant in equation 2.12
is allowed to depend linearly on the predecay strategic priming strength
P, via 1, = 1,0 — k Py, and we take 7,0 = 0.5, x = 0.4, to place 7, in the
appropriate range of 200 to 500 ms to yield reasonable RTs.

Summarizing, equations 2.12 and 2.13 imply that conflict-mediated bias
during the nth trial is given by

_( _RsI
n = —Pye ‘o, :
pu(RSI) = —P, (52%m) (2.14)

The supplementary materials show that this simplified conflict-monitoring
mechanism resembles the original one of Jones et al. (2002) and Botvinick
et al. (2001) and however, it also enables the separation of this mechanism
from others and allows an explicit examination of its strengths and ef-
fects as RSI varies (see section 3.1.3). Although several studies (Jones et al.,



2418 J. Gao et al.

2002; Jentzsch & Leuthold, 2005; Soetens & Notebaert, 2005) suggested that
higher-order AF may be due to conflict monitoring following task execu-
tion, they did not explicitly address the effects on reaction times and error
rates for different RSI values.

We propose two different implementations for top-down cognitive con-
trol. In model 1, response conflict decreases the inputs to both decision
units by adding equal inhibitory biases to them (see Figure 1A). As in sim-
ilar models of conflict-mediated control (Botvinick et al., 2001; Jones et al.,
2002), we include baseline activity by adding a constant ppase (= 0.5 here,
as in Jones et al., 2002) so that inputs remain in the same range. With this
mechanism alone, the dynamics during the nth trial are governed by

dx

TCT; =—kx1 — Bf (x2) + p1 + pu(RSI) + Prase + o1, (2.15a)
dx

f“de =—kxo — Bf(x1) + 2 + Pu(RSI) + Poase + o2 (2.15b)

Alternatively, in model 2, we suppose that response conflict decreases
the sensitivity to stimuli. Instead of the symmetric bias p; = p; + pn(RSI),
we reset stimulus sensitivity pg — po + pn(RSI). Since p,(RSI) < 0, this
decreases the difference |1 — p2| = 2p9 between the inputs. Similar to the
addition of baseline activity in the first implementation, we add baseline
sensitivity po = po + pn(RSI) + 0.15 such that the resulting new py values
fall into a reasonable range. With this acting alone, the resulting RTs also
exhibit a typical AF pattern. (See Figure 5, bottom.) To keep py positive, we
set yp = 0.15.

Testing them in combination with the other mechanisms developed
above, we shall see in sections 3.1.4 and 3.2 that while both capture sequen-
tial effects on reaction times, model 2 produces more realistic error rates.

2.2 Parameters, Simulation Methods, and Inclusion of Noise. In
Table 1, we summarize the complete parameter set introduced above and
specify the values used in the simulations of section 3. Many of these are
taken directly from previous modeling work, and none is entirely free.

For numerical simulations of equations 2.1, we employ the Euler-
Maruyama method (Higham, 2001). The behavioral RT comprises the
decision time (DT) and a nondecision-related latency (T;,,) that includes
sensory processing and motion execution (Usher & McClelland, 2001;
Shadlen & Newsome, 2001). We set RT = DT + T, where DT = 1. N, and
N is the number of steps required to simulate one trial. Note that 7. also
appears in equations 2.1: smaller 7, implies quicker decay and larger inhibi-
tion. We set 7. = 0.1 throughout to be in general agreement with Cho et al.
(2002) and use step size dt = 0.02, so that each simulation step corresponds
to 2 ms in real time. We fix T;,, = 160 ms, putting RTs in the same range
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as the data of Soetens et al. (1985), which is consistent with the literature
(cf. Usher & McClelland, 2001). The value of T;,, does not affect the pattern
of sequential effects (it simply changes absolute RT values), and the value
of 7. does not affect our qualitative conclusions (it uniformly changes the
slopes of the curves in Figure 7).

Due to the relative lack of data on error rates, we focus on sequential
effects on RTs under changes of RSI, initially ignoring noise by setting o = 0
in equations 2.1, and asking how different deterministic mechanisms indi-
vidually affect RTs. We show that the resulting reaction time patterns are
unaffected by moderate noise and then devote a short section to sequen-
tial effects on ERs. In the final simulations, gaussian noise with standard
deviations o = 0.3 for the first model and ¢ = 0.4 for the second model is
introduced in order to produce appropriate error rates (see Figure 7, bottom
panels).

Our primary goal is to propose mechanisms that qualitatively repro-
duce previous data and offer explanations for the various effects, so we do
not perform parameter fits to specific experiments. Nonetheless, as noted
in Table 1, model parameters are adapted from or chosen consistent with
previous work and to yield reasonable RTs and ERs, and we include com-
parisons with data from Soetens et al. (1985), Kirby (1972), Vervaeck and
Boer (1980), and Cho et al. (2002).

3 Results

In this section, we repeatedly use two graphical devices that have been
developed to display the influence of sequential effects: RT versus stimulus
sequence graphs and repetition-alternation scattergraphs. The former de-
scribe sequential effects on decision performance by plotting mean RTs or
ERs for different sequence histories as in Figure 7 below (cf. Soetens et al.,
1985, Fig. 2). Points on the abscissa denote the 2V possible sequences of
length N, and the ordinates are the corresponding mean RTs (or ERs) for
the last trial in the sequence (the bottom entry). The data divide into a
repetition curve on the left (the last trial is R) and an alternation curve on
the right (the last trial is A). First-order effects adjust the relative positions
of the repetition and alternation curves; higher-order effects influence their
relative slopes.

The repetition-alternation scattergraph or exchange function was intro-
duced in Audley (1973) (see Figure 8 below; cf. Soetens et al., 1985, Fig. 1).
Each point represents a given prior sequence (e.g., ARA), its abscissa being
the mean RT of repetition trials following that sequence (ARAR) and its ordi-
nate the mean RT of subsequent alternation trials (ARAA). Points aligned at
approximately 45 degrees correspond to a pure AF effect, meaning that cer-
tain sequences lead to shorter RTs and others lead to longer RTs, regardless
of how they continue. In contrast, an angle of approximately —45 degrees
identifies a pure SE pattern, implying that if a sequence leads to shorter
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RTs under continued repetition, it yields a longer RT for an alternation and
vice versa. Thus, plotted versus RSI as in Figure 9 below, the angle of the
repetition-alternation scattergraph changes from positive to negative as RSI
increases and AF transitions to SE (cf. Soetens et al., 1985, Fig. 5).

3.1 Effects of Individual Biasing Mechanisms on Mean Reaction
Times. We first examine how the different biasing mechanisms individ-
ually influence decision RTs and ERs, following the order of their introduc-
tion in section 2. We then present simulation results on reaction times and
error rates that combine the three strategies of sections 2.1.2 to 2.1.4.

3.1.1 Residual Activity Does Not Cause Higher-Order Facilitation. Conven-
tionally, both first- and higher-order AF are ascribed to residual traces of
previous stimuli that accumulate across trials, leading to facilitation at short
RSIs (Soetens et al., 1984, 1985). Contrary to this, we show here that simu-
lations of equation 2.1 with only decay of unit activities during RSI suggest
that the characteristic positive slope of the alternation curve cannot be ex-
plained by residual activity in the decision layer alone.

The top panel of Figure 3 shows residual activities remaining from pre-
vious trials that form initial conditions x;(0) for the current trial. Current
stimuli are always assumed to be 1. Thus, in repetition curves, the pre-
vious stimulus was also 1, whereas in alternation curves, it was 2. Here
we adopt the parameters of section 2.1.1 during stimulus presentation but
increase leak and inhibition to k =4 and g = 15 during RSI, preserving
the ratio 8/k = 3.75. As explained in the supplementary materials, residual
unit activities that remain following the decay of states in the absence of
stimuli during RSI form initial conditions for the next trial. The resulting
dependence of initial conditions on RSI, shown in supplementary Figure 4,
suggests the simplified residual activity description of section 2.1.2.

The repetition RT curves are all flat (left-hand side of Figure 3B), although
the residual activities are not (lowest curve on left-hand side of Figure 3A).
By expressing the history sequences in terms of 1 and 2, one can see that
alternation RT curves can have only negative slope, although this is evident
only for the shortest RSIs. For example, RRRA and RAAA correspond to
22221 and 22121, assuming the current stimulus is 1. Unit 1 is evidently
at a greater disadvantage at the beginning of the current trial for RRRA
than for RAAA, leading to a larger RT for RRRA. The resulting negative
slope of the alternation curves implies that higher-order facilitation is not
due to dynamics within the decision layer alone but rather to top-down
mechanisms.

3.1.2 Expectation Bias Changes Slopes of Repetition and Alternation Curves in
Opposite Ways. Expectation-based biases produce the opposite-sign slopes
in repetition and alternation RT curves characteristic of SE, as shown
in Figure 4. This pattern becomes clearer as RSI increases due to the
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Figure 3: Residual activity shifts RTs vertically. (A) Initial conditions of units
1 (solid black) and 2 (dashed gray) after sequence histories shown in abcissa,
with current stimulus 1. The previously winning unit starts closer to threshold
on repetition curve and farther from threshold on alternation curve for all
RSIs (results coincide at ~ —0.2 for RSI 500 and 1000 ms). (B) RT curves shift
vertically as RSI varies but remain predominantly horizontal, repetitions being
faster than alternations for all RSIs. Parameters are as in Usher and McClelland
(2001), except for decay rate k = 4 and inhibition strength g = 15 during RSI.
See the key for symbols denoting RSIs.

development of expectation and bias over time. Since only the relative
bias to the two units influences sequential effects, other strategies can yield
similar results (e.g., if only one unit is biased with parameter yp suitably
increased). Note that the repetition and alternation curves are not horizon-
tal for RSI = 50 ms; instead, both are kinked: at AAAR in the repetition
curve and at AAAA in the alternation curve. This is because the expectation
timescale is faster after longer sequences, which is important in capturing
the breakthrough phenomenon, explained in section 3.2.

3.1.3 Conflict-Based Bias Can Cause Higher-Order Facilitation. Since alter-
nations result in higher conflict, biasing the decision layer by response
conflict from previous trials leads to greater effects as the proportion of
alternations in the sequence grows (see the top panel of Figure 5), al-
though the overall effect weakens as RSI lengthens, due to decaying bias
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Figure 4: Expectation biases RT slopes asymmetrically. (A) Biases from
expectation-related neural activity to unit 1 (solid black) and 2 (dashed gray),
assuming current stimulus is 1. Since biases to the decision units are opposite
in sign, opposite changes in slope occur for repetition and alternation curves as
RSI varies. (B) Mean RTs resulting from this mechanism alone: as RSI decreases,
slopes decrease. See the key for symbols denoting RSIs.

(see equation 2.14). The resulting RTs exhibit a parallel slope AF pattern,
which becomes less sequence dependent as RSIs increase. This trend is sim-
ilar whether inhibition is sent to the decision layer (model 1) or the sensory
layer (model 2): Figure 5 (center, bottom). Thus, higher-order facilitation
can derive solely from conflict-based inhibition.

3.1.4 Effects of Noise on Error Rates. When white noise is included in equa-
tions 2.1, the basic RT patterns described above persist, and each feedback
mechanism produces a characteristic error pattern, as shown in Figure 6.
Since less experimental data are available to reveal the dependence of ERs
on RSI, we collapse the five RSI conditions to two: short (RSI =50 and
100 ms) and long (RSI = 250, 500, and 1000 ms), as in Soetens et al. (1985).

The major effects are as follows. Residual activities produce approxi-
mately uniform ERs for long RSIs but alternation ERs are notably higher
and repetition ERs lower for short RSIs (top left), and the expectation bias
is reflected in the overall positive and negative ER slopes of the repetition
and alternation curves, respectively (top right). RT patterns are similar for
both conflict models (see Figure 5), but model 2 predicts more realistic ER
patterns with higher ERs for short RSIs (bottom right) while model 1 re-
verses this and produces lower ERs overall (bottom left), and the general
trends of slopes for short RSIs are also reversed.
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Figure 5: Conflict bias produces parallel RT slopes. (A) Biases p,(RSI) to neural
units 1 and 2 due to response conflict, assuming current stimulus is 1. Repetition
and alternation curves are identical, since both units receive the same bias. (B)
Mean RTs resulting from the first implementation alone: as RSI decreases, slopes
increase as curves rotate counterclockwise about their left-hand ends. (C) Mean
RTs resulting from the second implementation alone. See the key for symbols
denoting RSIs.

3.2 Combined Biasing Mechanisms Account for Reaction Times and
Error Rates. We now combine the residual activity model of section 2.1.2,
bias derived from the expectation-mediated top-down control mechanism
of section 2.1.3 and the response conflict biasing mechanisms (model 1 or
2) of section 2.1.4. Both versions of the complete model can reproduce se-
quential effects on RTs over the range of RSIs examined in Soetens et al.
(1985). Specifically, the upper panels of Figure 7 show that (1) as RSIs in-
crease, the position of the alternation curve shifts from above to below that
of the corresponding repetition curve, and (2) its overall slope changes from
positive to negative with the transition from AF to SE occurring when RSI
reaches ~ 100 ms. Finally (3), breakthrough occurs. This is signaled by a
strong decrease in mean RT in passing from RAAA to AAAA and a strong
increase in RT between RAAR and AAAR at short RSIs.

Breakthrough is robustly observed in almost all experiments (Soetens
et al., 1984, 1985; Sommer et al., 1999), although its size varies, being influ-
enced by factors such as practice and aging (Vervaeck & Boer, 1980; Melis,
Soetens, & van der Molen, 2001). If AF alone dominated at short RSIs, mean
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Figure 6: Error rates resulting from added noise. Each panel shows the effect of
one mechanism. (A) Residual activity. (B) Expectation bias. (C) Conflict bias, the
first implementation. (D) Conflict bias, the second implementation. Averages
performed over 5000 trials with white noise of standard deviation 0.5. Note the
differences in vertical scales.

RTs should be longer after three than after two alternations, even if the
current trial is also an alternation. However, the fact that RTs for AAAA are
shorter than for RAAA implies that SE operates at very short RSIs in break-
through and that a critical number of alternations is required for subjects
to detect a pattern and form an expectation for the coming trial. The model
produces these effects by allowing the timescales v and tp to depend on
sequence lengths (see equations 2.6-2.7, and 2.12 and 2.14).

The error rates of Figure 7 show that both conflict bias models capture
the qualitative ER pattern at long RSIs but that model 1 fails for short
RSIs, predicting an alternation curve with negative slope in contrast to the
positive slope exhibited in Soetens et al. (1985).

To compare with Figure 1 of Soetens et al. (1985), we show repetition-
alternation scattergraphs in Figure 8 and their slopes in Figure 9. Also
compared are data from Kirby (1972) and Vervaeck and Boer (1980). In
computing slopes by linear regression, the breakthrough points (AAAR
and AAAA) are excluded. As expected, slopes decrease with increasing
RSI, passing through zero around 100 ms, as concluded in Soetens et al.
(1985). Slopes derived from the data of Soetens et al. (1985) using the same
regression algorithm are also shown in Figure 9 for comparison. Both data
and model results exhibit similar negative (positive) slopes for long (short)
RSIs. We emphasize that RTs collected in different experiments can differ
substantially, as shown in Figure 8 (bottom panels); here we focus on general
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Figure7: Comparison between model predictions and data under varying RSIs.
(Left) Mean RTs (top) and ERs (bottom) for model 1 with noise SD 0.3; conflict
implemented by symmetrical inhibitory biases. (Center) RTs (top) and ERs (bot-
tom) for model 2 with noise SD 0.4; conflict acts asymmetrically by decreasing
stimulus sensitivity. Averages performed over last trial of sequence histories
shown. (Right) Mean RTs (top) and ERs (bottom) from Soetens et al. (1985),
reproduced with the authors” permission.

patterns described at the beginning of section 3 that hold across different
conditions.

3.3 Comparisons with Additional Data. We end by showing that ad-
justment of timescales in the model can accommodate effects due to more
complex stimuli and to practice.

3.3.1 A More Complex Discrimination Task at Long RSI. Although the tran-
sition from AF to SE for both first- and higher-order effects occurs for the
same RSI in Soetens et al. (1985) and in the simulation results presented
here, this is not necessarily true. In the model, first-order AF is caused by
residual activity, but higher-order AF is due to a mechanism similar to that
of SE, so the corresponding transition RSI values can differ. Specifically,
the timescale of the decision-layer dynamics determines the transition for
first-order effects, but the timescales over which conflict and expectation-
mediated mechanisms operate determine the transition for higher-order
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Figure 8: Repetition-alternation scattergraphs. (Top two rows) Scattergraphs
for models 1 and 2 with RSI = 1000 ms (left) and 50 ms (right). (Bottom two
rows) Scattergraphs for the data of Soetens et al. (1985) (third row), Kirby
(1972) (bottom left), and Vervaeck and Boer (1980) (bottom right), presented
with authors’ or publishers’” permissions. Crosses represent the sequence AAA,
pluses represent RRR, and solid circles denote all other sequences. See the
opening of section 3 for an explanation. Slopes for long RSIs are negative in
both model predictions and data, implying dominance of strategic expectancy
(SE); those for short RSIs are positive, implying automatic facilitation (AF).

effects. As noted above, this prediction is confirmed by Cho et al. (2002),
which used an 800 ms RSI (see Figure 10). In those data, the first-order effect
is dominated by AF, while higher-order SE produces a cost-benefit pattern.
This implies that first-order AF persists through the 800 ms RSI, while the
transition RSI value from higher-order AF to SE is shorter than 800 ms.
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Figure 9: Scattergraph slope dependence on RSI. Slopes (ordinates) decrease
from positive, implying dominance of AF, to negative, implying dominance of
SE, as RSI increases (abcissa). Filled circles joined by solid line: predictions of
model 1 (top row in Figure 8); filled squares joined by solid line: predictions
of model 2 (second row in Figure 8); open triangles joined by dashed line:
reanalysis of the data of Soetens et al. (1985, Fig. 5) (third row in Figure 8).
Transitions from AF to SE occur at about 100 ms for both models and data. An
analogous curve representing the bottom panels of Figure 8 cannot be produced
due to the lack of data at intermediate RSIs.
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Figure 10: Model fits to the data of Cho et al. (2002). (Left) Mean RTs (top) and
ERs (bottom) for model 1 with noise 0.3. (Center) RTs (top) and ERs (bottom)
for model 2 with noise SD 0.6. Parameters are as for the previous simulations
except for slower post-response decay time constant 7, = 350 ms and longer
nondecision latency T, = 200 ms. Averages performed over last trial of se-
quence histories shown. (Right) Mean RTs (top) and ERs (bottom) from Cho
et al. (2002), reproduced with authors” permission.
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The task of distinguishing upper- and lower-case 0’s in the experiment
of Cho et al. (2002) differs from that of Soetens et al. (1985), which is sim-
ply to respond to one of two lighted LEDs. The greater task difficulty and
longer RTs in Cho et al. (2002) suggest that the decision units would evolve
more slowly, but the intrinsic timescale of expectation-mediated bias should
not change much, implying longer-lasting residual activity and first-order
AF that persists for longer RSIs. We also expect that the visual processing
time necessary to decode the case-sensitive stimulus would exceed that for
light detection. We confirmed this by changing two parameters. Figure 10
demonstrates that using a slower postresponse decay timescale in equa-
tion 2.2 (r, = 350 ms in place of 50 ms) and a longer nondecision latency
(Tsm = 200 ms in place of 160 ms), the network with either conflict bias
model produces the sequential effect patterns in the data. In increasing
from the 50 ms value chosen in section 2.1.2 (to match Soetens et al., 1985),
we are restoring the longer postdecay timescale adopted in Cho et al. (2002).

3.3.2 Practice Changes RT Sequence Patterns. Soetens et al. (1985) also
investigated the effects of practice (in experiment 3). In addition to an
overall speed-up reflected in reduced RTs that is more marked for short RSIs
than for long ones, they find that the slopes and vertical positions of the
alternation curves change more than those of repetition curves at the short
RSI, while they barely change at long RSI. The overall decrease in reaction
time can be intuitively explained by speeding of nondecision sensory-motor
processes, the T, term in our model. Changes in slope and relative position
of the alternation curve at short RSI, on the other hand, are often described
as the results of a reduction in AF strength (Soetens et al., 1985). With the
different mechanisms separated, we can examine these hypotheses. We find
that although the first intuition is correct the second is not, in the sense that
reduction in conflict-based biasing, the primary mechanism underlying
AF, does not produce the observed effects of practice. According to this
hypothesis, the slopes of alternation and repetition curves should both be
flattened by the same amount. Instead we find that reducing the timescales
of all biasing mechanisms can capture the effects.

Specifically, Figure 11 (left, center) shows simulation results when
timescales are systematically reduced in stages for the three subsets of data
(trial numbers 1-2000, 2001-4000, and 4001-7000). For the second and third
subsets, the top-down bias timescales t and tp are reduced to 60% and 40%,
respectively, of their original values, mimicking a saturating effect of prac-
tice; the postresponse decay timescale of the decision layer, 7, is reduced
by the square roots of these factors. Consistent with the intuition about the
sensory-motor processes, Iy, drops from 160 to 140 and 130 ms, respec-
tively. This concerted change of four parameters shows that practice effects
are consistent with speed-up of all substages of the process. Faster residual
decay could point to more effective resetting of decision units (possibly via
basal ganglia; Lo & Wang, 2006), and faster top-down biasing may be due
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Figure 11: Model fits to practice effects. Each column shows mean RTs for early,
middle, and late sets of trials with symbols identified in the key. Top row shows
results for 50 ms RSI and bottom row for 500 ms RSI. (Left) Model 1. (Center)
Model 2. (Right) Data from Soetens et al. (1985), reproduced with authors’
permission. Timescales of the mechanisms of sections 2.1.2-2.1.4 are reduced
with practice, as described in text.

to improved effectiveness of memory or conflict inputs (cf. equation 2.8). In
addition, since decision-layer activity feeds forward to high-layer control
units to produce conflict and expectation, faster decision-layer dynamics
also speed up top-down control mechanisms.

4 Discussion

Employing the leaky accumulator model of Usher and McClelland (2001)
for decision dynamics, in this article we develop and analyze a unified
model of three biasing mechanisms that account for a wide range of phe-
nomena observed in serial RT tasks. In Figure 12 we summarize these mech-
anisms and their effects on reaction times. On the left, residual activities of
the decision units favor repetition over alternation: due to initial condition
bias, the current trial takes less time to reach decision threshold if it is a rep-
etition. In the center, asymmetrical biases due to expectation-mediated con-
trol lead to a cost-benefit pattern in RTs. At right, both implementations of
conflict-induced biases promote a benefit-only pattern in RTs, although the
asymmetrical version of model 2 provides better estimates of ERs. Combin-
ing these mechanisms, bias due to expectation increases during RSI, while
response conflict bias decays, producing the transition from AF to SE.
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Figure 12: Schematic summary of the three biasing mechanisms. (Top left) Post-
response residual activity of decision units. Black curve with unfilled (filled)
arrow shows trajectory during RSI when x; (x;) won previous trial; dash-
dotted lines are decision thresholds. (Top center) Asymmetrical bias due to
expectation-related priming. (Top right) Biases induced by conflict: black ar-
row: model 1, symmetrical inhibition; gray arrow: model 2, asymmetrical bias
due to decreased stimulus sensitivity. (Middle row) Effects on RT due to in-
dividual mechanisms. (Bottom) RT patterns for combined mechanisms: faster
dynamics after long alternation sequences causes breakthrough at short RSIs
(kinks in dashed lines).

Albeit a model with combined mechanisms may be simpler and seem
more appealing, this decomposition permits examination of each individ-
ual mechanism’s effect, as in Figures 3 to 6, and allows explicit tests of
hypotheses and exploration of the influence of different experimental con-
ditions. Specifically, we demonstrate that postresponse decay of neural ac-
tivity cannot alone account for higher-order AF, but that this can arise
from conflict-based inhibition. We then combine the mechanisms to qual-
itatively reproduce the rich data sets of Soetens et al. (1985), Kirby (1972),
and Vervaeck and Boer (1980) in Figures 7 to 9. We confirm our hypoth-
esis that in a more difficult perceptual task, the dynamics of the decision
units is slower while that of top-down biases remains largely unchanged
(see Figure 10). In particular, by slowing the postresponse decay rate, we
explain the dominance of first-order AF and high-order SE at an RSI of
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800 ms (Cho et al., 2002). We also find that the overall effects of practice can
be accounted for by speed-up of all the mechanisms, without change in the
relative strength of conflict-based biases (see Figure 11).

Although the full model includes numerous parameters, few are new to
the work presented here, and most of their values, including those of the
connectionist model of section 2.1.1, are adopted from the literature (see
Table 1). Our numerical experiments revealed that only four parameters
require careful tuning to match the data patterns in Figures 7 to 9; specif-
ically, the timescale of the expectancy-mediated control mechanism 7y in
equation 2.7, the timescale and linear coefficient 7,9 and « of the conflict-
mediated control mechanism in equation 2.14, and the ratio of bias strengths
due to response conflict and expectation yp /yp inequations 2.5and 2.13. The
values of these parameters were chosen by hand to lie in reasonable ranges.

Our model does not identify specific brain areas, but it is consistent with
functional studies of the anterior cingulate cortex (ACC) and prefrontal
cortex (PFC). Specifically, it is known that conflict monitoring is associated
with the ACC (e.g., Carter et al., 1998; Botvinick, Nystrom, Fissell, Carter,
& Cohen, 1999; Botvinick et al., 2001), and cognitive control is generally
thought to involve the PFC (e.g., Botvinick et al., 2001; Johnston & Everling,
2006; Johnston, Levin, Koval, & Everling, 2007). While direct experimental
evidence regarding repetition and alternation memories is lacking, we con-
jecture that they are also based in the PFC, where rule-encoding neurons
are known to exist. Indeed, the fMRI study of Huettel, Mack, and McCarthy
(2002) found higher PFC activity after pattern violations, with greater am-
plitudes when longer sequences precede violation. The low time resolution
in Huettel et al. (2002) precludes study of detailed dynamics, but the time-
resolved EEG study of Sommer et al. (1999) reveals sequential effects in the
P300 signal, suggestive of SE for both long (500 ms) and short (40 ms) RSIs,
although in the former case, amplitudes are stronger and in the latter case,
RTs are unaffected by SE. This suggests that expectation begins to build
around 40 ms or earlier. Motivated by this, in section 2.1.3 we adopted a
30 ms delay before onset of expectation-mediated control.

Several potentially important effects were neglected in this study. There
is evidence that fast alternations in human subjects could be sensory
based rather than mediated by top-down control (Fecteau, Au, Arm-
strong, & Munoz, 2004). This and other effects could also be (partially) due
to an inhibition-of-return phenomenon (Lupianez, Klein, & Bartolomeo,
2006; Klein, 2000; Fecteau & Munoz, 2003). We did not address these or
how stimulus-response complexity might modulate biasing mechanisms
(Proctor & Vu, 2006; Soetens et al., 1985). Nor did we investigate adjustments
to decision thresholds, as in Simen, Cohen, and Holmes (2006), in place of
initial conditions and biases. In principle, threshold adjustments can also
produce the sequential effect patterns, although the underlying mechanism
differs from biasing. (Also see Vickers & Lee, 1998.) We nevertheless hope
that our modeling will motivate further behavioral and imaging studies on
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humans, as well as electrophysiological primate studies. Sufficiently long
trial sequences will be required (e.g., in Dorris, Pare, & Munoz, 2000, only
sequences of two prior trials were studied). Conclusive tests of the model
will also require new experiments in which RT distributions are collected
for a range of RSIs.

In summary, this work offers, for the first time, a unified model that
captures and explains a variety of sequential effects observed in serial RT
tasks over a wide range of RSIs and experimental conditions. It does so
by integrating a mechanistic decision-making model with three essential
biasing mechanisms. The different timescales with which these mechanisms
operate provide windows into how each contributes to the overall behavior.
We believe that this model lays a foundation for addressing sequential
effects in more complex tasks and that it offers the opportunity for future
experimental assessments.
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