Abstract

Recent studies have begun to elucidate the neural correlates of evidence accumulation in perceptual decision making. Few studies have used a combined modeling electrophysiological approach to study this question. We introduce a novel multivariate approach to EEG analysis with which we can perform a comprehensive search for neural correlates of dynamics predicted by the drift diffusion model. We show that the dynamics of evidence accumulation are correlated with decreases in the 4–9 Hz theta band over the course of a trial. The rate of decrease in this band correlates with individual differences in fitted drift diffusion model parameters.

Keywords: EEG; drift diffusion model; decision making

Introduction

Every day we make thousands of decisions, and modeling work has attempted to describe these decision processes. With the advent of cognitive neuroscience, there has been a growing interest in its neural correlates. This paper introduces a novel approach to studying decision dynamics with human electrophysiology. By using model-predicted dynamics as regressors, we perform a comprehensive search for features of electroencephalography (EEG) activity that could reflect evidence accumulation. The features of EEG activity we focus on are oscillations.

The presence of oscillations in EEG measurements indicates that neurons in a region have an increased level of spiking relative to their baseline (Fries, Nikolić, & Singer, 2007). Through being synchronized, the oscillations become strong enough in power to be visible on the scalp. This synchronization is thought to allow groups of neurons to communicate with each other (Fries, 2009; Womelsdorf et al., 2007). The brain also appears to use oscillations in conjunction with spikes to encode information, for example phase coding, where the phase of an oscillation at which a neuron fires encodes the spatial location of an animal (Fries et al., 2007; O’Keefe & Recce, 1993).

The most well-known oscillations are those in the 28–90 Hz gamma band, which have been studied extensively in the context of attention tasks. A prominent finding is that attention increases the amplitude of occipital 28–90 Hz gamma oscillations (e.g., Fries et al., 2007). Yet some studies have shown that also oscillations of lower frequency are important for attention. Busch and VanRullen (2010) found that stimuli are better perceived at certain phases of the on-going 4–9 Hz theta oscillation than at other phases. This has led to the idea that sustained attention is not actually sustained, but rather has an oscillating quality. Moreover, it suggests that 4–9 Hz theta oscillations, which until recently have primarily been associated with memory (Kahana, Seelig, & Madsen, 2001) and spatial navigation (e.g., O’Keefe & Burgess, 1999), are also relevant to perception.

On a more abstract level, it has been suggested that theta oscillations are crucial for the coordination of multiple sources of activity at decision points (Womelsdorf, Vinck, Leung, & Everling, 2010). Theta oscillations have also been found to covary with decision certainty (Jacobs, Hwang, Curran, & Kahana, 2006) and prediction errors in decision making (Cavanagh, Frank, Klein, & Allen, 2010). This suggests that theta oscillations could in fact have a more fundamental role in decision making, namely the accumulation of evidence.

Evidence accumulation plays a fundamental role in computational models of decision making like the Drift Diffusion Model (DDM; Ratcliff, 1978). This model posits that to make a decision, a person accumulates information until they reach a threshold. Their response times (RTs) can be predicted by adding a fixed non-decision time to the time it takes to reach the threshold. The model has thresholds belonging to each response alternative, and reaching the correct threshold leads to a correct response. The speed with which one accumulates evidence on average is referred to as the ‘drift rate’ of the accumulation process.

In our study, we examine the hypothesis that theta oscillations, but not oscillations at other frequencies, reflect evidence accumulation as predicted by the DDM. We will also test whether the dynamics of theta oscillations covary with DDM parameters estimated from a participant’s behavioral data. This will not only further our understanding of human decision making, but may eventually allow us to distinguish different implementations of the DDM that cannot be disentangled solely based on behavioral data (Ditterich, 2010).
Methods

Task: Participants performed a perceptual decision making task in which they judged the direction of motion (left or right) of a display of randomly moving dots of which a percentage moved to the left or the right. These random dot kinematograms were similar to those used in a series of psychophysical and decision making experiments involving monkeys as participants (e.g., Britten, Shadlen, Newsome, & Movshon, 1992; Gold & Shadlen, 2001; Shadlen & Newsome, 2001). Stimuli consisted of an aperture of approximately 3 inch diameter viewed from approximately 100 cm (approximately 4 degrees visual angle) in which white dots (2 x 2 pixels) moved on a black background. A subset of dots moved coherently either to the left or to the right on each trial, whereas the remainder of dots were distractors that jumped randomly from frame to frame. Motion coherence was defined as the percentage of coherently moving dots. Dot density was 17 dots/square degree, selected so that individual dots could not easily be tracked.

We had a control task, in which participants did not need to integrate evidence (non-integration condition). In this condition, each trial started with random dot motion, followed by an arrow indicating the direction to which a participant should respond. The arrow onset time was calibrated such that the dot-motion-viewing times in these trials mirrored the response time distribution of the dots trials.

The experiment presentation code was written in PsychToolbox (Brainard, 1997). Dots were presented with PsychToolbox extensions written by J. I. Gold (http://code.google.com/p/dotsx/).

Participants: Twenty-three participants (12 female; 21 right-handed, mean age 25, range 18–38) participated in our experiment in exchange for payment. The experiment was approved by the Internal Review Board of Princeton University. Participants engaged in 3 separate hour-long training sessions in which they became familiar with the task. At the end of these training sessions, performance on a psychometric block was used to determine the coherences at which they performed at approximately 70 and 90% correct. These coherence levels were used for the two EEG sessions.

Recording Methods: We recorded EEG data from 128 channels using Neuroscan EEG caps with a Sensorium EPA-6 amplifier. All data were referenced to the nose or chin-electrode and off-line rereferenced to an average reference after automatic bad channel removal (Friederici, Wang, Herrmann, Maess, & Oertel, 2000; Hestvik, Maxfield, Schwartz, & Shafer, 2007).

General Linear Model for EEG

We developed a General Linear Model (GLM) method to correlate the predicted DDM dynamics with the EEG time series. For every trial, we modeled a ramp of activity starting at stimulus onset and ending at the response. We contrasted this ramp with a down-going ramp that began with a transient initial jump at stimulus onset. The sum of the up- and downramps forms a “boxcar,” or step function, modeling the alternative hypothesis of a generic “task-on” state. Figure 1 shows our different regressors. We created a set of parallel up-ramps, down-ramps and boxcars for the arrow control task.

In addition to these, we created a set of nuisance regressors, modeling transient neural responses to stimulus onset and button press, and eye activity. To determine the canonical stimulus-locked response, we computed for every participant individually the stimulus-related average in electrode Cz and put this average waveform (from 0–300 ms post-stimulus) in the regressor at any timepoint where a stimulus was presented. Similarly, we used the average response-locked waveform from -200–0 ms relative to the response in CPz as the response regressor. The eyeblink regressor was created from the eye channel, which was set to zero outside the eyeblink episodes detected with an amplitude threshold.

The regressors of interest consisted of ramps, which started at stimulus onset for each trial, and ramped up to a value of 1 at the time of the response. To test our hypotheses regarding ramping activity, we created separate ramp regressors for dots (integration) and arrows (non-integration) trials. We compared the fits of these regressors to regressors reflecting the alternative hypotheses of neural activity that is “on” during the trial (“boxcar”) and neural activity that reflects a transient initial response slowly decreasing over the trial duration.

A major problem in GLM analyses of EEG data is the poor signal-to-noise ratio (SNR). To increase the SNR we created features (independent variables in the regression) that only consisted of the trials themselves, padded with 300 ms be-

Figure 1: Sample regressors. Pictured are, from top to bottom: upramp, downramp, stimulus regressor, response regressor and eyeblink regressor.

1Cz and CPz are two central electrodes that show strong responses to stimulus presentation and button presses.
before the stimulus and after the response, pasted together into a single time series. We created features from the raw EEG time series, and from wavelet-convolved signals in the delta (2–4 Hz), theta (4–9 Hz), alpha (9–14 Hz), beta (14–28 Hz), low gamma (28–48 Hz) and high gamma (48–90 Hz) ranges. After construction, we downsampled these features to 50 Hz, and z-transformed them.

We ran the GLM in two steps. In the first step we modeled all the nuisance regressors. The regressors of interest were then modeled on the residuals of this first regression. This ensured that the nuisance regressors could not influence the fits for the regressors of interest. In addition to computing the regression coefficients for each feature, we also computed the variance explained by correlating the feature with the fitted regressors (Tabachnick & Fidell, 2005).

Results

Before turning to the electrophysiological results, we discuss our behavioral data. Participants were engaged in a random dot motion discrimination paradigm, where the level of motion coherence was set such that they performed at roughly 70 and 90% correct (Figure (c)). These results are consistent with a DDM parametrization in which thresholds are roughly constant and the rate of evidence accumulation is high for the high coherence condition, and low for the low coherence condition.

Before running the GLM on the ramp regressors, we verified this method by plotting the main loadings of the eye blink, stimulus and response regressors. Figure 3 shows that as expected, eyeblinks have a frontopolar topography, whereas stimulus and response regressors (which were generated based on electrodes Cz and CPz, respectively) have a more central distribution centered around the respective generator electrode.

Having established that the GLM\(^2\) is a viable method to analyze EEG data, we used canonical correlation (CC), a multivariate technique, to search for the hypothesized ramp dynamics in our data. The advantage of CC is that it allows linear combinations of channels to predict linear combinations of regressors. Because it is more difficult to interpret linear combinations of regressors, we initially restricted our attention to single regressors. Nevertheless, preliminary data

\(^2\)Which predicts the time series of a single electrode by a linear combination of regressors.
indicate that ±40% larger CCs can be obtained by allowing linear combinations of regressors.

To be able to do group analysis, we had to take a subset of the data for every participant to further reduce computational load. We then performed a CC between the regressors and the EEG time series for every channel, and at every frequency. We did a separate CC for every frequency band, because we aimed to make inferences about which would show most evidence of ramping activity.

One may wonder whether a CC based on a subset of each subject’s data is valid. To address this concern, we compared the correlation value of the canonical correlate of interest with the predicted correlations within each subject (i.e., using the complete data for each subject). Figure 4 shows that the within-subject correlations based on a subject’s complete data, weighted by the coefficients obtained from the CC, have very similar correlations to the across-subject CC based on a subset of a subject’s data [sign-test comparing median correlation to 1: \(p = 0.21^{3} \)].

Figure 5(a) shows for every frequency range (as well as non-frequency-transformed EEG) the CC of the upramp. This correlation is largest in the 2–4 Hz delta and 4–9 Hz theta bands. The CC in the theta band is specific to the dots task, whereas the CC in the delta band occurs also for the non-integration (arrows) condition (Figure 5(b)). This suggests that theta oscillations are a more likely candidate for a neural correlate of evidence accumulation than delta oscillations. The downramp and boxcar regressors show a much lower correlation [in the theta band the CCs are 0.11 for the boxcar, 0.076 for downramp dots, and 0.15 for downramp arrows]. All CCs have highly significant \(p \)-values because of the large number of datapoints [all \(p s < 0.001 \)].

We then asked to what extent the DDM, free from trial-to-trial variations in RT, could predict the same EEG data. To do this, we compared the CCs for a regressor that was ramping up or down exactly in concordance with RT to that of a regressor that was more stereotyped: it had a fixed length (time-locked to the response) but was modulated by an individual’s DDM parameters.\(^4\) Because the DDM-modulated regressor is not yoked to RT, it fails to capture the stochastic noise in RT. Although the CCs are uniformly higher for the RT-based regressor than for the DDM-modulated regressor, it is remarkable that the DDM explains a large fraction of the variance that the RT-yoked regressor explains. In other words, the model is able to account for a large portion of the neural variance in ramp-like behavior.

\(^3\)Of course one should keep in mind that it’s impossible to prove the null hypothesis.

\(^4\)Regressor height was modulated by the threshold parameter; its slope by the drift parameter and the ramp onset was delayed by the non-decision time.
Figure 7: Significant correlation between difference in drift rate and difference in slope of the response-locked time course across coherence conditions.

\[r(22) = 0.36, \ p = 0.019 \] between an individual’s drift rate and the slope of the average theta-band time course for that same person. There was no significant correlation between the level the time course reached at the end of the response interval and the threshold \[r(22) = -0.11, \ n.s. \].

If the ramp indeed reflects the drift rate, then it should be possible to divide trials into those with a short and long RT based on the thus defined neural drift rate. Figure 8 shows that this can indeed be done for a subset of the participants (four examples are given). Subsequent fits of the DDM on the subsets of trials for these participants verified that higher neural drift was associated with a higher behavioral drift (Figure 9). The fact that this is not possible for all participants might be related to (1) problems with their EEG data quality or (2) non-optimal task performance where participants engage in different cognitive processes (distraction) in a large fraction of the trials. A further investigation of this is left for later work.

Discussion

We have shown that 4–9 Hz theta oscillations exhibit dynamics consistent with evidence accumulation in a perceptual decision making task. In addition, the magnitude of the difference between the slopes of these potential “neural accumulators” covaries with individual differences in the drift rates obtained from the behavioral data.

These results support previous findings of the involvement of theta oscillations in decision making (e.g., Cavanagh et al., 2010; Jacobs et al., 2006). One may wonder what is particular about the theta frequency that would make it suitable for a function in decision making. A modeling study by Smerieri, Rolls, and Feng (2010) gives a possible answer. They showed that in simulated spiking neural networks of two populations of mutually-inhibiting neurons, RTs decreased and drift rates increased with increasing theta power. This effect was specific to the theta range because higher frequencies are too fast to modulate the cell’s membrane potential, which acts as a low-pass filter.

What is quite surprising in our neural correlate of evidence accumulation is that instead of it increasing, oscillatory power actually decreases over the course of the decision interval. It may be that decreases in oscillatory power actually reflect increases in functional brain activity. This is consistent with Lorist et al. (2009), who found that oscillatory power increases with fatigue, implying it increases with productive task performance. It may also be the case that over the course of evidence accumulation, one moves from a more global mode of processing, in which information is combined from a large number of neurons, to combining information from a much smaller set of neurons (associated with less synchronization and less oscillatory power).

One may also wonder why the correlations between the neural accumulators and EEG data are so low (although significant). In fact, the order of magnitude of correlations that we obtained are not unlike those obtained in GLMs applied to fMRI data. This is caused by the large amount of noise in neural data. Future studies should investigate whether this can be improved by applying e.g., independent component analysis (Delorme, Makeig, & Sejnowski, 2001). Also regularization, which focuses on the informative features in the data, could possibly help to increase the correlation between model dynamics and EEG data.

Our findings have several implications for future research. First, these correlates of the DDM that are observable in EEG can be used to assess the effect of task manipulations (such as speed-accuracy trade-off or reward rate) on accumulation dynamics. Second, there are large individual differences in task performance. EEG signatures of neural accumulators may allow us to distinguish different types of participants or strategies, given that individual differences in DDM parameters co-varied with the slope of the neural accumulation signal. The “neural accumulators” thereby soak up some portion of the
noise in the model. Potentially these “neural accumulators” capture individual trial noise, such as attentional fluctuations, as well, although that remains to be proven. Finally, we can use the same multivariate methods to clarify the topographical location of possible neural accumulators in fMRI data.

In short, we have provided evidence for a neural correlate of the dynamics of evidence accumulation in decision making measured in human EEG. Accumulation dynamics were captured best by 4–9 Hz theta oscillations in a set of superior parietal channels, and covaried with individual differences in DDM parameters.

Acknowledgments

The authors gratefully acknowledge funding from the AFOSR Multi-University Research Initiative FA9550-07-1-0537, and Conte Center MH062196 grants. They also like to thank Valerie Karuzis, Jillian Brinberg, Peter Foster, Laura deSouza, and Brian Schilder for help with testing participants.

References

