Goal Management in a Recurrent Neural Network

Patrick Simen
psimen@eecs.umich.edu
EECS Dept.
University of Michigan

Abstract

The management of goals and subgoals is widely
acknowledged to be important in complex cognitive
tasks involving planning or problem solving, and
goal management plays a central role in a number of
symbolic cognitive architectures (e.g., Soar, ACT).
Nevertheless, few neural network models have at-
tempted to model goal management explicitly. We
present a recurrent neural network goal stack mech-
anism. It uses activation decay over time to distin-
guish more recent goals from older goals and uses
attractor dynamics to retrieve the most active goal
after the current goal has been achieved. We have
incorporated this mechanism in a model of a well-
known neuropsychological task, the Tower of Lon-
don (Shallice, 1982).

Introduction

A neural model of goal management is the center-
piece of a larger effort by our group to model pre-
frontal cortex function in humans. Our model is
based on the following basic assumptions.

e A single goal controls behavior at any given time.
We will refer to this goal as the controlling goal.

e Multiple non-controlling goals can also be active
at the same time as the controlling goal.

e More recent goals tend to be more active than less
recent, goals.

e When a controlling goal becomes inactive (e.g.,
because it was achieved), the most active remain-
ing goal takes control.

We implement these assumptions using continuous-
valued recurrent networks. Each goal is represented
in two networks: once in its own network (called a
memory pool), and also in a separate network (called
the goal module) when it is the currently controlling
goal. Those goal module units that are highly active
when a goal is controlling are collectively called the
goal’s on-set. A goal’s memory pool activity decays
over time as long as the goal is non-controlling. The
goal module is bidirectionally connected to each of
the memory pools via excitatory connections. We
also assume that the goal module receives exter-
nal input (both excitatory and inhibitory) associ-
ated with specific goals from other sources that are
task-specific and that it sends modulatory output to

Thad Polk and Rick Lewis
tpolk@umich.edu, ricklQumich.edu
Psychology Dept.
University of Michigan

Eric Freedman
freedman@umich.edu
Psychology Dept.
University of Michigan, Flint

task-specific targets in order to influence behavior.
In a subsequent section, we will provide a specific
example for the Tower of London task.

The typical operation of the model is as follows.
External task-specific input to the goal module ex-
cites potential goals. If more than one goal is ex-
cited, those goals compete via attractor dynamics
to select a single controlling goal (Goal 1). The
controlling goal in turn excites its associated goal
memory pool via the excitatory connections from
the goal module to the goal memory pools. If sub-
sequent task-specific input excites a different goal
(Goal 2, e.g., a subgoal that needs to be achieved
before Goal 1 can be achieved), then the new goal
will become the controlling goal and its memory pool
will become activated. The memory pool for Goal 1
will therefore lose its excitatory input from the goal
module and its activity will begin to decay. If an-
other goal (Goal 3) subsequently replaces Goal 2 in
the goal module, then its memory pool will be ac-
tivated, Goal 2’s memory pool will begin to decay,
and Goal 1’s memory pool will continue to decay.
Hence, as new goals are added, a gradient in activa-
tion levels develops across previous goals: older goals
(which have had more time to decay) will have lower
activity levels than will more recent goals (which
have had less time to decay). If the current con-
trolling goal is actively inhibited (perhaps because
it has been achieved) and no other goals are receiv-
ing task-specific excitation, then the active memory
pools excite previous goals and those goals compete
for control. In general, the most active memory pool
(which typically corresponds to the most recent goal)
will win the competition and the most recent goal
will become the controlling goal. In this way, the
model exhibits ‘last-in-first-out’ (LIFO) stack be-
havior. Task-specific input can ‘push’ new goals on
top of the stack so that they control behavior, and
when those goals are accomplished (or inhibited for
some other reason), they are ‘popped’; and then the
most recent previous goal tends to be selected.

Decay in Memory Pools

The activation function of all units in the model is
a continuous differential equation determined by a
function of summed input,

1
1 4 e—(input — bias)’

f(input) =

The decay process in a memory pool is governed by
the relative values of A, the uniform excitatory con-
nection strength between units in the pool, and the
number of units in the pool. Fig. 1 illustrates the
process as a cobweb diagram. The vertical axis rep-
resents current activation of one of the pool’s units.
The activation function is overlaid on a reference line
through the origin. The slope of this line is deter-
mined by connection strength and number of pool
units. If there are ten units, units are self-exciting,
and connection strengths are uniformly 1, then the
slope of the reference line will be 1/10: if unit k cur-
rently has activation y, then the other 9 units will
also be active at approximately y, since all units be-
come active or inactive together in the absence of
noise. Thus, given connection strengths of 1, the
input to unit k on the next cycle will be 10 x y (in
other words, move horizontally from the point on
the activation curve with height y until reaching the
reference line in order to find the next cycle’s input
value). The course of activity over time in one unit
will therefore follow the trajectory shown by the stair
steps, as long as external input to the pool is held
constant. (More accurately, since activation in the
model is determined by an approximately continu-
ous differential equation, net input to a unit on the
next cycle will increase or decrease only slightly rel-
ative to its previous value in the direction indicated
by the cobweb diagram. The effect is the same how-
ever: decay at a rate controlled by A and connection
strength.)

T T T T T T T T T
Attractor
0.9 \]

0.8 Starting Point 4

07 function with
refreshing input
from a corresponding
goal on-set.

Effective activation \ \

Starting Point

Effective activation
0.4 function with 0 input

Output at time t+1
o
o
.

Example effective activation
0.3 function, with exaggerated b
rightward shift to demonstrate
02k decay cobweb.

Attractor

.
0 1 2 3 4 5 6 7 8 9 10
Weighted sum of inputs to a single memory pool unit at time t

Figure 1: Cobweb diagram illustrating decay and
refresh of single unit activation in a memory pool.
Here, X\ is 0.43 and bias is 5.1.

External input to a memory pool comes from the
corresponding pattern on-set in the goal module.
Since goal module on-sets spend most of their time
either maximally or minimally active, intermediate,
transient levels of activity can be ignored. The effect
of an on-set being fully active is that the activation
curve for memory pool units is shifted to the left.
This is because input to a unit is now based on the
sum of inputs from other memory units plus a rel-
atively constant level of goal module input, so the

leftward shift is equal to the input from the goal
module. In that case, the cobweb diagram indicates
that the memory pool will become refreshed to a
high level of activity. When the goal module on-
set is minimally active, the memory units’ activation
curves are based on internal pool activity alone and
are shifted back to the right. In this case, the cobweb
diagram indicates a slow, steady rate of decay.

We chose A so that f’s derivative at input = bias
is nearly equal to the slope of the reference line. This
results in a steady rate of decay over a large portion
of a unit’s activation range, rather than a rate that
varies over time. This choice was motivated by the
need to keep memory activity of successively active
goals as uniformly spread out as possible. Decay
that is too fast will result in the forgetting of goals.
Decay that is too slow will result in goal memories
which are too close to each other to ensure LIFO
retrieval.

Tower of London model

We have incorporated this goal stack mechanism in a
specific model of the Tower of London task (Shallice,
1982). This task has been used extensively to assess
planning impairments and is thought to depend cru-
cially on goal management (Ward & Allport, 1997).
The task is a variant of the Tower of Hanoi problem
and involves moving colored balls on pegs from an
initial configuration until they match a goal config-
uration (Fig. 4). There are no constraints on which
balls can go on which others (unlike the Tower of
Hanoi problem), but the pegs differ in how many
balls they can hold at one time (the first peg can
hold one ball, the second peg can hold two, and the
third peg can hold three). Participants are often
asked to try to figure out how to achieve the goal in
the minimum number of moves and are sometimes
asked to plan out the entire sequence of moves before
they begin.

The structure of the model is illustrated in Fig. 2.
The goals correspond to getting specific balls in spe-
cific locations (e.g., getting the blue ball onto the
bottom of the third peg). In addition to the goal
module and goal memory pools, the model explic-
itly represents the current configuration of the balls
(in the visual modules), which balls are blocked from
moving (the ball status modules), the goal configura-
tion (in the goal visual modules), and the currently
selected move (in the move module). Finally, the
model also encodes information that is relevant to
the current goal, specifically: what is above the ball
that the goal refers to (abovesource), what is in the
target position (intarget), and the lowest free posi-
tion on the peg that is not the source or target of
the current goal (freeposition) This information is
crucial for getting balls out of the way without dis-
rupting progress toward the current goal.

Excluding the influence of the goal module on be-
havior, the operation of the model is fairly simple.
The representation of the configuration (visual mod-
ules) excites all legal moves in the move module and
moves that involve blocked balls are strongly inhib-

— Red—1 Red—2 Blue—6 Tower of
Goal Pool Goal Pool Goal Pool London GOAL
MEMORY
POOLS

7
— o
o
~
GOAL VISUAL
MODULES

L 000/

MOVE MEMORY POOLS

Red—1 Red—2 Blue—6
Move Pool Move Pool Move Pool

FREEPOSITION

MOVE

BALL STATUS

T LS 7
o 8 8) BALL STATUS -
R GREEN ’ s
-7 VISUAL BALL STATUS
MODULES BLUE ’

—

— Excitatory connection Inhibitory Connection
y — 2 = cCompound Connection

Figure 2: Model schematic: ovals represent modules,
and ovals within ovals represent on-sets. Rightward
bold arrows indicate clamping by Matlab code.

Tower of London algorithm:

1. Godl isinitialized to ‘ Tower of London’.

2. |Fal goasareachieved (i.e., the current board configuration represented in
Visua matches the goal configuration), simulation ends.

3. ELSE GoalVisua is clamped to represent the most important, unachieved
base-level goal to work on, and excites that goal’s on-set in Goal.

4. |F the move that would achieve the current goal islegal, Goal causes Move
to make that move. Then Visua and BallStatus are clamped to values based

on the updated environment, and the goal-push modules are clamped to 0.

The new Visual configuration then wipes out the current goal representation
and memory pool with strong inhibition (it begins to pop the stack).

4.1. |F all goalsare achieved, simulation ends.

4.2. ELSE IF it was active recently enough, the most recent unachieved
goal is retrieved (completing the pop and bringing the retrieved ele-
ment to the top of the stack). (4) isrepeated.

4.3. ELSE IF multiple goals emerge, Goal and Goal memory pools are
clamped to zero, and (1) is repeated (this situation occurs very infre-
quently).

4.4. EL SE the Tower of London goal isretrieved. (2) isrepeated.

5. EL SE Freeposition, Abovesource and Intarget are set appropriately in order
to push anew subgoal.

5.1. |IF Freepositionisset to ‘no goal (ng)’, which can happen sometimes,
no information is available (according to this agorithm) to guide
subgoal selection. The ‘ng’ pattern in Freeposition inhibits the Goal
net strongly in that case, and the Move module is now free to select
any legal move, in order to do something essentially random.

5.1.1. IF aunique move is selected, Visual and BallStatus are up-
dated, and the goal-push modules are zeroed. (2) is repeated.

5.1.2. EL SE theMovemoduleiszeroed, and (5.1.1) isrepeated (this
situation is also rare).

5.2. ELSE anew goal is activated according to the perceptual attributes,
and that goal’s memory pool becomes refreshed. (4) is repeated.

Figure 3: The model algorithm.

ited by the ball status modules. The possible moves
then compete with each other in the move module
via attractor dynamics until one is selected (i.e., con-
vergence to an attractor pattern is detected using a
threshold on Euclidean distance between previous
move module activity and current activity). With-
out other sources of input, the move that is finally se-
lected is random and simply depends on noise. Once
a move is selected, the representation of the configu-
ration is changed accordingly, and the new configu-
ration once again votes for any legal moves. In short,
in the absence of the goal module, the model simply
performs random search using any moves that are
legal in the current configuration.

The goal module modulates processing in the
move module by exciting moves that will achieve
the current goal and inhibiting moves that won'’t.
This modulation biases the competition in the move

module so that moves that will achieve the current
goal will tend to be selected. If no legal move will
achieve the current goal, then no move is selected
(because the current goal will inhibit all legal moves
in that case).

The selection of a new goal can occur in one of
three ways. First, if the current goal has been
achieved, then it is inhibited and the most recent
goal on the stack will tend to be reinstantiated. Sec-
ond, if the current goal cannot be directly achieved
because of some obstruction (either a ball in the tar-
get position or a ball above the ball that we want to
move), then a new goal to remove the obstruction
will be proposed (via input from abovesource, intar-
get, and freeposition). Third, if there is no specific
current goal (aside from just solving the Tower of
London problem), then the goal configuration will
vote for getting the balls into the final positions.
These goals compete in the goal module until one
wins and assumes control.

L

Initial Configuration Move 3
Move 1 Move 4
Move 2 Move 5: Goal

Figure 4: A five-move Tower of London configura-
tion sequence (optimal solutions of four moves exist).
Black stands for blue, shaded stands for green, and
white stands for red.

Figs. 5 and 6 illustrate the behavior of the model
on the problem from Fig. 4. The top panel of Fig.
5 plots the activation of different goal module on-
sets over time during problem solving. The plotting
symbols correspond to goals as indicated in Fig. 6.
Activation of various on-sets is largely all-or-none,
demonstrating that only one goal can influence be-
havior at a time. The bottom panel in Fig. 5 shows
the activation of the corresponding memory pools.
As the figure illustrates, activation of previous goals
decays away when they are not directing behavior.
When a current goal is achieved, the memory pools
compete to choose a new goal and the most recent
goal wins. When a previous goal is reinstated as the
controlling goal, its memory pool is also refreshed.

The Goal Stack as a Tool for
Cognitive Modeling

An appealing feature of this goal stack mechanism
for cognitive modeling is that stack depth is in-
herently limited. This is encouraging, since people

Tt
T

DDDJQ
DOO 0 oﬁsz;A
!

R

ol

00 0o T T SO T e
o ohe — B B g -
i o kb

SR =]

g0 — — — — — —

100 200 | 300 |

0 | 400; | 500 | 600

| |
Moye 4 Move 5
| |

| |
Moyve 1 Moye 2 Movye 3
| | |

1 —Og koD

o

ol |

T

|

0.8, o 1o |
o, (< ig Co,

085@908 OOOOGP

Sog i |

I I

| I

O

O

T
|

800, |
\00088@g ©0000,
|

|

|

|

0.4 t

|

|

|

e

|

|

|

I

I

1 1 | s | s I & 1 1 I

0.2} edetdos000040 90005040 %vwoeyi*ﬁ%i‘**f******ﬁif&*ww:
| | | | FB | | * |
|

| 100 200 | 300 1 400 | 500 | 600

0

Figure 5: Memory pool and goal module pattern
activation. Dashed lines show cycles at which con-
vergence was detected. Marker symbols correspond
to goals as in Fig. 6.

r—}
1 33’1
N +63 +G3 +Gr: ~ 2 «aGT ﬁ
0B4 ©B4 ©0B4 OB4 OB4 OR5 OR5 OR5

oTower OTower oTower oTower oTower cTower oTower OTower oTower oTower

Initial Cnvgl Cnvg2 Cnvg3 Cnvg4 Cnvg5 Cnvgé Cnvg7 Cnvg8 Cnvg9

Figure 6: The stack structure implicit in the activa-
tion plot of Fig. 5. Pushes and pops are indicated
by downward and upward arrows respectively.

clearly exhibit limited working memory for goals. In
order to get stack functionality, memory pools must
be constructed so that successive goals can be dis-
tinguished by the goal module in terms of relative
activation levels: if differences are not large enough,
the goal module may activate a pattern out of or-
der, or simultaneously activate multiple patterns. If
decay is too slow, activation levels for successive
goals will not be distinguishable by the time the
next convergence occurs. The consequence of decay,
however, is that without external refreshing input,
memory activity becomes minimal in finite time, so
goals pushed too deeply into the stack have a ten-
dency to ‘drop out the bottom’ and be permanently
forgotten. We do not currently know the value of
the limit, or how maximum stack depth relates to
the various factors influencing recall. But it appears
that increasing the effective stack depth requires an
increasingly precise relationship between activation
function parameters and self-excitation and number
of units in memory pools — this in turn produces an
increased sensitivity to noise. Thus, arbitrarily deep
stacks are implausible.

Goal memory activation dynamics show further
interesting properties: although the depth of the
stack is limited, the persistence of a goal below the
top of the stack need not be. That is, even though
a goal may have failed to become active in the goal

module for an arbitrarily long period, its memory
pool activation may remain high indefinitely. This
can happen when competition between goals in the
goal module is such that some losers of the competi-
tion come close to becoming active before ultimately
losing (after the third convergence in Fig. 4, for
example, ‘g—3’ is retrieved, but memory pools for
‘b—4’ and ‘Tower of London’ both show reversal of
decay and maintenance of relative order). In doing
S0, a goal module on-set must become transiently ac-
tive at a level between minimal and maximal. This
activity also provides refreshing input to the corre-
sponding memory pool, so decay is slowed or slightly
reversed. The effect appears almost ‘homeostatic’, in
that memories in the goal stack retain their relative
activation level order, and the topmost goals (those
which are active enough to recruit their own refresh-
ing input after the next goal pop) persist indefinitely
in the stack.

Means-ends analysis, a ubiquitous human
problem-solving strategy, is defined in terms of a
goal stack (Newell & Simon, 1972). Goal stacks are
also commonplace in symbolic cognitive models, so
achieving a neural implementation is a step toward
unifying symbolic and subsymbolic computation.
However, there has recently been criticism from
within the ACT-R symbolic modeling community of
ACT-R’s reliance on a perfect goal stack (Altmann
& Trafton, in press). Altmann and Trafton argue
that perceptual cues and goal activation decay
should take the place of the perfect ACT-R stack,
and that non-LIFO goal retrievals will therefore be
a natural occurrence in many domains. In the same
spirit, the neural stack-mechanism presented here
should be seen as a special case of a more general
use of memory pools and goal modules which could
easily be adapted to allow for perceptual cues
(and any obvious implementation of perceptual
goal-retrieval cues seems guaranteed to disrupt
strict LIFO behavior). Nevertheless, it is important
to show that a neural model is capable of managing
goals in the absence of such cues, so we have
restricted our attention to that task here.

References

Altmann, E.; & Trafton, J.G. (in press). Memory
for goals: an activation-based model. Cognitive
Science.

Hopfield, J.J. (1984). Neurons with graded response
have collective computational properties like those
of 2-state neurons. Proceedings of the National
Academy of Sciences, 81, 3088-3092.

Newell, A., & Simon, H. A. (1972). Human problem
solving. Englewood Cliffs, NJ: Prentice-Hall.

Shallice, T. (1982). Specific impairments of plan-
ning. Philosophical Transactions of the Royal So-
ciety of London, 298, 199-209.

Ward, G., & Allport, A. (1997). Planning and
problem-solving using the five-disc Tower of Lon-

don task. The Quarterly Journal of Ezrperimental
Psychology, 50A (1), 49-78.

