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Abstract

Reward-maximizing performance and neurally plausible
mechanisms for achieving it have been completely character-
ized for a general class of two-alternative decision making
tasks, and data suggest that humans can implement the optimal
procedure. A greater number of alternatives complicates the
analysis, but here too, analytical approximations to optimal-
ity that are physically and psychologically plausible have been
analyzed. All of these analyses, however, leave critical open
questions, two of which are the following: 1) How are near-
optimal model parameterizations learned from experience? 2)
How can sensory neurons’ broad tuning curves be incorporated
into the aforementioned optimal performance theory, which as-
sumes decisions are based only on the most informative neu-
rons? We present a possible answer to all of these questions in
the form of an extremely simple, reward-modulated Hebbian
learning rule for weight updates in a neural network that learns
to approximate the multi-hypothesis sequential probability ra-
tio test.

Keywords: Hebbian learning; diffusion model; neural net-
work; multi-hypothesis sequential test; sequential probability
ratio test; speed-accuracy tradeoff; response time

Introduction
We examine the problem of maximizing earnings from a se-
quence of N-alternative decisions about the identity of noisy
stimuli, with N > 2. Our goal is to parameterize a simple
neural circuit model whose behavior approximates optimal
performance in such tasks, while simultaneously accounting
for the fundamental role of tuning curves in the neural repre-
sentation of sensory stimuli. Throughout, we take ‘optimal’
to mean reward maximizing, and we assume that correct de-
cisions earn rewards for the decider.

As we show, simple principles of neural computation are
sufficient to approximate this form of optimality quite closely
in a class of N-choice tasks involving response-terminated
stimuli: that is, stimuli that provide information continuously
until the time (the response time) at which participants decide
for themselves when to stop observing and make a response.
This is somewhat surprising, given that a general decision
policy that guarantees truly optimal performance cannot even
be explicitly formulated for such tasks, as we discuss below.

N-choice, response-terminated decision tasks
We assume that participants earn rewards for correct re-
sponses, and earn less for errors (for simplicity, we assume
errors earn nothing). In the simple tasks we consider, each
stimulus type has a fixed prior probability within a block of

trials, and the average signal-to-noise ratio of each stimulus
is fixed. The duration, rather than the number of trials, is also
held fixed, and the distribution of response-to-stimulus inter-
vals (RSIs) that delay the onset of the next stimulus after a
response is stationary. In this case, maximizing the rate of
reward also maximizes the total reward.

Maximizing gains in this and a variety of similar tasks
requires probabilistic inference. While the importance of
a principled inference process is widely understood in psy-
chology and neuroscience, the complexity of optimal deci-
sion policies in tasks with response-terminated stimuli (also
known as ‘free response’ or ‘response time’ tasks) and N > 2
choices appears to be less well appreciated.

For 2-choice tasks of the type just described, reward-
maximizing performance has been completely characterized
(Bogacz et al., 2006): a sequential probability ratio test
(SPRT) should be carried out in which the current likelihood
ratio of the two hypotheses is multiplied by the probability
of a given data sample under one hypothesis and divided by
the probability of that data sample under the other hypothe-
sis (equivalently, the logs of these probabilities can be added
and subtracted, respectively — from now on, we will cast our
discussion in terms of log-likelihoods). A response should
be made when the resulting log-likelihood exceeds a fixed
threshold (Wald & Wolfowitz, 1948). There exists an optimal
starting point of the log-likelihood ratio (e.g., 0, for equally
likely stimuli) and an optimal separation between the two re-
sponse thresholds (one greater and one less than zero) that de-
pends on the signal-to-noise ratio (SNR) and the RSI (Bogacz
et al., 2006). Gold and Shadlen (2001) have demonstrated
that for systems consisting of a neuron/anti-neuron pair, each
of which is tuned for one of the two stimulus types in a 2-
choice task, the log-likelihood ratio is approximately propor-
tional simply to the difference between the activations of the
two neurons, suggesting an extremely simple neural imple-
mentation of the SPRT.

In contrast, if the number of choices is greater than 2, the
optimal policy for deciding based on accumulated informa-
tion is nontrivial. In particular, a natural (but definitely sub-
optimal) approach to N-choice decision making is to com-
pute the posterior probability of each of the N hypotheses,
and then select whichever one first exceeds a fixed threshold.
In fact, the best decision is made when the entire set of pos-
terior probabilities meets conditions that are nontrivial func-



tions of the posterior values. A thought experiment may help
make clear why this is true. Consider the case of a 3-choice
task in which one choice has attained an 80% posterior prob-
ability of being correct, while the other posteriors are 10%
and 10%. A fixed 80% threshold will therefore not distin-
guish this case from a case in which the posteriors are 80%,
19% and 1%. These two cases are quite different, however,
and dealing optimally with them requires taking account of
all posterior probabilities in a more sophisticated way. Be-
cause of this, and because of the inherent difficulty in defin-
ing truly optimal decision policies to apply to the posteriors,
multi-hypothesis sequential probability ratio tests (MSPRTs)
were designed to approximate optimality with a decision pol-
icy consisting of fixed thresholds applied to posteriors or like-
lihood ratios (Dragalin, Tartakovsky, & Veeravalli, 1999).

Tuning curves
Tuning curves are ubiquitous in neural responses to stimuli
(Butts & Goldman, 2006). The relationship between tuning
curve shape and decision making performance has intrigued
researchers for several years (e.g., Pouget, Deneve, Ducom,
& Latham, 1999). Naively, one may suppose that task par-
ticipants improve their performance by sharpening the tun-
ing curves of the neurons involved. However, wider tuning
curves are in some cases more efficient in conveying infor-
mation, and the most informative tuning curve shape depends
strongly on the noise and correlations (Zhang & Sejnowski,
1999; Seriés, Latham, & Pouget, 2004). Moreover, in several
tasks, participants may improve performance without signifi-
cantly altering the shapes of the tuning curves in the neurons
involved. For instance, in an angle discrimination task, mon-
keys are able to learn to discriminate between finer angles
over time, while the tuning curves of primary sensory neu-
rons are altered very little (Ghose, Yang, & Maunsell, 2002;
Law & Gold, 2008). This suggests that improvements in per-
formance take place in a learning process downstream from
the receptor neurons.

In this paper we explore the ways in which a subject may
improve performance in decision tasks, given tuning curve
shapes in receptor neurons. We do not consider the alteration
of receptor units’ tuning curves, but rather how the informa-
tion in tuning curves can be utilized more efficiently over the
course of many trials.

The leaky competing accumulator model for
decision making

We propose a three layer neural model for decision making
(defined in Table 1, and depicted in Fig. 1). The first layer
acts simply as a sensory amplifier; the next layer integrates
the information from the first layer, but also exhibits com-
petitive dynamics that gradually build a commitment to one
course of action over the alternatives; the last layer triggers a
discrete motor response when commitment to one response is
sufficiently strong. For convenience, we refer to these three
layers, respectively, as the MT, LIP and SC layers. These

labels reflect the fact that our model exhibits known proper-
ties of neurons in the monkey middle temporal area (MT),
the lateral intraparietal area (LIP) and the superior collicu-
lus (SC) in decision making tasks requiring eye movements
in response to visual motion stimuli (i.e., random dot kine-
matograms; Shadlen & Newsome, 2001). The architecture of
this circuitry is expected to apply without major modification
to other stimulus and response types, however.

Table 1: Three layer model with weight learning rule.

Si, i = 1, . . . ,n input signals (MT)

dxi =

(
−k xi−m ∑

j 6=i
x j +Si

)
dt + . . .

cdBi accumulators (LIP)

zi = H(yi−Θ), yi =
n

∑
j=1

wi jx j decision units (SC)

wnew
i j = (1−α)wold

i j +α∆wi j LIP to SC weight-

∆wi j = rzix j learning rule
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Figure 1: Neural network model with 4 accumulators and 3
alternatives. The weight matrix W denotes the weights of the
connections between the xi’s and z j’s. Arrows represent exci-
tatory connections; circles represent inhibitory connections.

We suppose that MT neurons have tuning curves that are
preferentially sensitive to a single, given direction of visual
motion, and that another layer is stimulated by the activ-
ity in this input layer. By virtue of their excitatory connec-
tions to LIP, model MT units’ tuning curves and their feed-
forward connections to LIP in turn define tuning curves for
LIP units. Questions of major importance in computational
neuroscience are: Through what sort of learning process do
these tuning curves arise? Can we define an optimal con-
nection scheme that maximizes some function, such as the
rate of reward earned by the model? We attempt to make
progress on these questions while making the simplifying as-
sumption that the brain circuits in question are approximately



linear systems (at least over a limited range of inputs), and
that they employ simple learning schemes (such as Hebbian
learning, or error-updating rules such as the Widrow-Hoff,
Rescorla-Wagner or delta rule). Recent work (e.g. McMillen
& Holmes, 2006; Bogacz & Gurney, 2007) that avoids discus-
sion of tuning curves and learning shows that these assump-
tions allow simple neural network models to map precisely
onto one or another form of MSPRT. We now demonstrate
that a similar model that learns connections strengths and ac-
counts for tuning curves does remarkably well at approaching
optimal (reward maximizing) performance in decision mak-
ing tasks with multiple alternatives. The model’s layers are
represented mathematically by S, x, and z.

Upon presentation of a stimulus, the model’s MT layer
presents a vector of signals to accumulators in the LIP layer.
The signal presented to the ith unit in the LIP layer is referred
to as Si, representing the total weighted sum of MT signals to
the ith accumulator. Each stimulus corresponds to a unique
signal, so that the set of signals to the LIP layer may be rep-
resented as a vector indexed by µ:

Sµ =
(
Sµ

1,S
µ
2, . . . ,S

µ
n
)
.

The task is to determine which of N possible signal vectors
this represents. Notice that the number of vectors can be dif-
ferent from the number of signals, i.e. in general n > N.

Although it is not required, we will generally take the Sµ

signals to be Gaussian:

Sµ
i = aexp

[
−

(i−dirµ)2

2φ2

]
, i = 1, . . . ,n . (1)

Here dirµ is the peak of the signal, a is the height of the peak
and φ is the width of the curve. As in McMillen and Behseta
(2010), we interpret the Sµ in terms of approximately Gaus-
sian MT tuning curves and weights from MT to LIP that pre-
serve this Gaussian tuning in the LIP units. Notice that if
φ = 0, then

Sµ
i = aδi,dirµ ,

where δi, j is the Kronecker delta, so that the signal is concen-
trated in the channel dirµ. But, if φ > 0, the signal will have
a spread around the peak. For MT units associated with the
dot-motion task, tuning curves have been measured to have
a width of about 40◦ (Law & Gold, 2008). The situation is
illustrated in Fig. 2. Angles far apart have very little overlap
in the signals, but when the angles are close the overlap is
substantial. For a two-alternative task in which dots travel on
average either up or down, the signals have very little overlap.
Signals for alternatives corresponding to more similar motion
directions have more overlap.

We model the LIP layer as a set of n leaky competing
accumulators. The linearized model for their evolution is a
stochastic differential equation (Usher & McClelland, 2001;
Bogacz et al., 2006; McMillen & Holmes, 2006):

dxi =

(
−kxi−m ∑

j 6=i
x j +Si

)
dt + cdBi , i = 1, · · · ,n , (2)
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Figure 2: Possible directions of coordinated movement (left
panels) and corresponding signal vectors (right panel).

where k is the decay rate, m is the mutual inhibition, and Bi
is a Wiener process (integrated white noise) representing the
noise in the signal and from other sources. The signal-to-
noise ratio is the ratio of the magnitude of the largest signal
to the variance of the noise, i.e. a/c. We can thus model
changes in the direction coherence by changing this ratio. The
effect of decay and inhibition is to concentrate the values of
the accumulators onto the signal vectors. Thus, moderate val-
ues of w and k tend to increase the accuracy. Best results are
achieved when decay and inhibition are balanced, i.e. w = k
(McMillen & Holmes, 2006). For simplicity, and to be con-
crete, throughout the rest of this paper we will present results
for k = w = 0.5, a = 2 and c = 1. Results are qualitatively
insensitive to these choices.

The output from accumulator j feeds into the ith unit of
SC with weight wi j. SC units apply step functions H with
thresholds Θ to their inputs. A response is made when SC
unit j transitions from 0 to 1 (i.e., when y j = ∑

n
j=1 wi jx j > Θ).

The results in this paper are generally applicable, but to be
precise we consider a motion direction task with 36 accumu-
lators and interpret these as representing increments of 10◦.
If the direction j ·10◦ is presented, the signal vector takes the
shape Sµ

i as in (1), with dirµ = j. For concreteness we con-
sider four possible directions of motion: 30◦,60◦,140◦,220◦.
Thus, if say, the direction of coordinated movement is 60◦,
the signal vector has a peak at the sixth accumulator. The
four possibilities are represented by the four possible signal
vectors with peaks at accumulators 3, 6, 14 and 22. In this
paper we only consider the case when all the possibilities are
equally likely, in which case the appropriate initial condition
for the accumulators is xi(0) = 0.

McMillen and Behseta (2010) showed that the optimal
weights wi j in the above are achieved when the weights
mimic the shape of the possible incoming signal vectors.
That is to say, a threshold crossing test best approximates
an MSPRT when wi j = Sµi

j . The magnitude of the weights



are not important in terms of optimality, as the magnitude
may be incorporated into the thresholds. The performance
of the threshold crossing tests is illustrated in Fig. 3. Here
we consider a test with 36 accumulators and the four alterna-
tives as described above. In Fig. 3 we plot the mean response
time (MRT) for a fixed value of the error proportion (ER).
For each value of the spread we compute the threshold such
that ER = 0.1, and find the corresponding MRT. Each panel
demonstrates an important fact, as we elucidate below.

In the left panel of Fig. 3 we take the signal vectors to be as
(1), and allow φ to vary. Thus, φ = 0 corresponds to the case
when the signal is concentrated in a single channel. Positive
values of φ correspond to signals that are spread about a peak.
In these computations, the weights are as desired for MSPRT
approximation, i.e. wi j ∝ Sµi

j . This panel thus shows the min-
imal MRT that can be achieved by a threshold crossing test
for an ER of 0.1. We see that there is an advantage to a mod-
erate spread in the signals if this information can be utilized
by the decision mechanism. In fact, the optimal spread is near
φ = 3. It is interesting to note that this corresponds to a width
in the shape of the signal vectors of about 30◦, while the width
of tuning curves in MT associated with the direction task as
measured in Law and Gold (2008) are approximately 40◦.

In the right panel we fix the spread in the signal vectors at
φ = 4, and compute MRT for various spreads in the weights.
In order to get an idea of how the spread in the shape of the
weights affects performance when the signal shape is fixed,
in these simulations we suppose that the weights also have a
Gaussian shape:

wi j = w0 exp
[
− (i− j)2

2φ2
W

]
, j = 1, . . . ,n,

where w0 is a normalizing factor chosen so that ∑
n
j=1 w2

i j = 1
(this normalization step is not in fact required). The spread
φW controls how the values of the accumulators are weighted
before making a decision. In the case φW = 0, we have yi =
xi, so that the accumulator values are not weighted. When
φW = ∞, each yi is the same, i.e. the sum of all accumulators.
The right panel of Fig. 3 shows that MRT is minimized when
φW = φ. That is, the optimal weights occur when the width of
the weight shape is the same as that in the signal vector.

To reiterate, a moderate spread in the signals is a significant
advantage, but only if the LIP-to-SC weights can be tuned to
take on the same shape as the possible signal vectors defined
by MT activity. In the following section we consider how the
weights may be modified over the course of trials.

An algorithm for learning the LIP to SC
weights

We propose a simple Hebbian weight learning algorithm for
the weights wi j. The learning algorithm is a modification
of a classical Widrow-Hoff rule (see, e.g., Hertz, Krogh, &
Palmer, 1991). In rules of this type, the connection strength
being modified acts as a filter that tracks an input signal. At
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Figure 3: Effects of signal spread and weight shape. Left
panel: Simulated MRT vs. spread in the signal vectors, where
the weights have the same shape. Right panel: MRT vs.
spread in shape of weights with signal vector fixed with φ = 4.
In all cases the threshold is such that ER = 0.1.

any point, its value is an approximately exponentially de-
caying, weighted average of past input values. High fre-
quency changes in this signal (representing noise) are filtered
out by the algorithm, producing little change in the updated
weight. In contrast, low frequency signal changes (represent-
ing, hopefully, the uncorrupted input signal) produce signifi-
cant changes in the weight. If the signal is constant and noise
is absent, the weight will converge approximately exponen-
tially on the value of the signal. If what is being tracked is a
signal that depends on the product of activations in a sending
unit and a receiving unit, then this rule is simply a Hebbian
update rule with a decay term for forgetting old co-activation
levels — a useful feature in a noisy neural system.

After each trial the subject responds with a choice among
alternatives, say i. At this time the weights to the output unit
zi corresponding to the choice made are updated, according
to whether a reward is received or not. Then, if the choice
corresponding to zi is chosen, the weights are updated by the
rule

wnew
i j = (1−α)wold

i j +α∆wi j , (3)
∆wi j = rzix j , (4)

where r is the magnitude of the reward, and α is the learning
rate. Notice that only the weights to the unit corresponding to
the choice made are updated, and this is the sense in which the
rule is Hebbian. For simplicity, we assume here that a reward
is either earned or not, so that r is either 1 or 0 depending on
whether a correct decision is made.

Thus, after each trial, if a correct decision is made the
weights to the correct output unit are increased in propor-
tion to the values of the accumulators x. There is no need
to estimate the probability of making a correct decision or an
expected value of the reward, as for example in reinforcement
learning methods, since only the values of the units are used
in the update rule. With this rule the weights track the shape
of the vectors being passed from the LIP layer. The weights
thus tend to oscillate around the means of the accumulator



values, 〈x j(t)〉.
The accumulator values on average take on the shape of

the signal vector from the MT layer. This can be proved an-
alytically, but here we show only simulation results. The up-
date rule (3-4) thus causes the weights to track values whose
means take on the shape of the MT-to-LIP signal vectors.
Therefore the weights tend, on average, to mimic the shape
of the signal vector, with oscillations about this shape that
depend on the learning rate.

Results of simulations
Figs. 4 and 5 show results of simulations using the update
rule (3 - 4). The weights are initially chosen randomly, with a
peak added at wii. Fig. 4 shows how the weights evolve over
time, and how this affects the performance of the subject. The
reward rate continually increases on average, and the ER con-
tinually decreases. The bottom panels show the weights to SC
corresponding to i = 14, or to angle 140◦. The weights for the
other alternatives behave similarly. Simulations in which the
weights are chosen differently show similar improvements in
performance and similar matching of the weight profiles to
the signal vector shapes. Cases in which the weights are all
chosen randomly show a more dramatic improvement in re-
ward rate (RR) since then the accuracy will initially be very
low. Fig. 4 shows that even when the weight has a peak at the
right position, a dramatic improvement occurs: for example,
the RR more than doubles and the RT and ER both decrease
over time.
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Figure 4: Effects of weight learning rule. The threshold is
fixed at z = 1. There are four alternatives (3, 6, 14, 22), and
the learning rate is α = .05. In the bottom panel the signal
strength is plotted on the right axis (circles), and the weights
are shown on the left axis (stars). The inter-trial delay used in
the calculation of reward rate (RR) here is 500 msec.

Figure 4 shows one block of 500 trials. In order to see
how the weight update rule behaves on average, we carried
out the same simulation for a number of blocks and averaged
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Figure 5: Averaged weights over 150 blocks of 500 trials. In
the top row φ = 4; in the bottom row φ = 8.

the weights over each block, and then took the average over
150 blocks of trials. Fig. 5 shows the averaged weights for
different values of the threshold, as well as different values of
the spread in the signals. We see that on average, the weight
profile shape is very close to the signal shape. Also indicated
in these figures are the ERs and MRTs for these blocks of
trials. Notice that in the lower left panel, the ER = .58 is
not much smaller than would be achieved by random guess-
ing (.75). In this case the threshold is very small, as is the
corresponding MRT of .09. In this situation it will take the
weights much longer to learn the shape of the signal vectors,
since most of the time the decision will be incorrect. This
is why the weights appear more erratic in this frame than in
the others. However, even in this case, the average values of
the weights take the same shape as the signal vector. Similar
comments apply, mutatis mutandis, to the upper left panel.

Generally, the model is insensitive to changes in the pa-
rameters a,c,k,m, in the sense that the weights tend on aver-
age toward the optimal weight shape mimicking the shape of
the signal vectors. If the learning rate α is made smaller, the
weights take longer to track to the shape of the signals, but
there is less variation around these mean values.

Fig. 6 shows the dynamics of evidence accumulation
within trials, demonstrating that Gaussian bumps of activa-
tion arise on the LIP layer (preserving the Gaussian input
signal profiles, and therefore producing Gaussian LIP-to-SC
weights through Hebbian learning).

Discussion
The simple rule (3-4) works remarkably well at learning the
shapes of the signal vectors from MT to LIP. This leads to
a dramatic improvement in performance, and occurs without
any direct connection to the MT layer. The three layer model
incorporates integration of information, a rule for making the
decision, as well as a simple algorithm for learning to op-
timize reward rates by learning the shapes of the vectors of
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Figure 6: Panel A, top, shows LIP unit activations at several time points within a decision. Activations are averaged over many
instances of stimulus type 2, which produces maximal activation in LIP unit 6 (visual angle 120◦; here we arbitrarily quantized
visual angle into 18 levels). Panel A, bottom, shows the weighted values of these activations feeding into each of 3 SC units.
Panel B shows the average state of evidence accumulation for choice 2 (input to SC unit 2; blue) and average LIP unit 6 activity
(red) within fixed-viewing time trials, without thresholds applied to the evidence (the interrogation protocol). Panel C shows the
average state of weighted evidence accumulation for choice 2 (blue) and average unit 6 activity (red) within free response trials
(black line indicates threshold). The weighted sum produces a higher signal-to-noise ratio, and therefore better performance
than evidence from unit 6 alone. Red and blue traces fall off over time because the average is based on fewer and fewer trials
as time progresses (more and more decisions have already taken place by the end of the plot).

neural signals coming from an input layer. These features are
essential elements of a complete decision-theoretic model.
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