
Universal computation by networks of model cortical columns

Patrick Simen
EECS Dept.

University of Michigan
Ann Arbor, Michigan

Email: psimen@eecs.umich.edu

Thad Polk
and Rick Lewis
Psychology Dept.

University of Michigan
Ann Arbor, Michigan

Eric Freedman
Psychology Dept.

University of Michigan
Flint, Michigan

Abstract— We present a model cortical column consisting of
recurrently connected, continuous-time sigmoid activation units
that provides a building block for neural models of complex
cognition. Recent progress with a hybrid neural/symbolic cogni-
tive model of problem-solving [9] prompted us to investigate the
adequacy of these columns for the construction of purely neural
cognitive models. Here we examine the computational power of
networks of columns and show that every Turing machine maps
in a straightforward fashion onto such a network. Furthermore,
several hierarchical structures composed of columns that are
critical in this mapping promise to provide biologically plausible
models of timing circuits, gating mechanisms, activation-based
short-term memory, and simple if-then rules that will likely be
necessary in neural models of higher cognition.

I. INTRODUCTION

Researchers in cognitive neuroscience are increasingly in-
terested in neural models of problem-solving and planning [2],
[5], [9]. Characterizing problem-solving and planning as the
manipulation of symbols has proven very useful in artificial
intelligence and cognitive psychology [8], but it is by no
means clear how such symbolic processing is implemented
in the brain. Yet this is just the kind of question that interests
cognitive neuroscientists.

In [9], we examined the hypothesis that dorsolateral pre-
frontal cortex in humans subserves activation-based short-
term memory for symbolic goals during problem-solving in
the Tower of London task, using a hybrid neural/symbolic
model. The model uses a system of locally recurrent neural
networks to encode symbolic information as stable patterns of
reverberating neural activity. The activation

���
of a unit � is

a value in �����
	�� governed by a standard sigmoid activation
function:

 ���
������ ����� 	

	 ������� � ��� �����! #"%$ � �'& � �(� (1)

where ���! #"%$ � �*),+-(.0/�1 � - � - , and 1 � - is the synaptic weight
on the connection from unit 2 to unit � . �3� is taken to model
the recent average firing rate of a neuron or a population.

Local networks, considered in isolation from external input,
are Hopfield networks with orthogonal memories [4]. They
correspond to symbolic variables, and the basins of attraction
around the possible stable patterns of activity within a network
correspond to the values of that variable. In this respect,
the model accords well with the recurrent connectivity seen
in cortex [10] and with evidence for short-term memory
maintenance through persistent neural firing [3]. We simulated

‘productions’, – the if-then rules that constitute the basic
symbolic processing operations of existing symbolic cognitive
architectures – by feedforward connections between these
modular networks. Production systems such as ACT [1], EPIC
[6] and Soar [7] have been used extensively to model higher
cognition due to their ease of programming and psychological
plausibility.

In [9], when feedforward connections from the units highly
active in pattern 4 of upstream network 5 excite the units
in downstream network 6 which are highly active under
the symbolic representation

, we say that the system is

implementing the rule: if 5 � 4 , then 6 �
. This model

represents goals as patterns of activity in a network that ‘votes’
for actions in an action network by exciting those that would
help achieve the current goal. However, it relies on non-
neural control code that detects approximate convergence to
an attractor in the action network as the trigger for initiating
a new step of neural processing, which it accomplishes by
‘clamping’ certain networks to particular values.

In order to show that the basic neural processing mecha-
nisms of [9] can be incorporated into a purely neural system
for general symbolic processing, we sought a biologically
plausible set of replacements for the non-neural mechanisms
it employs. We obtain systems compatible with the principles
of [9] that also have the required convergence detection and
sequencing functions by employing neural mechanisms at five
levels of hierarchical composition. At the lowest level is the
firing rate model of a unit or population given in eq. 1. At the
next level is a mechanism inspired by a characteristic feature of
cortical organization: cortex is organized into vertical columns
of interconnected neurons that extend throughout the six or
so horizontal layers of cortex [10]. We model columns as
structured arrangements of sigmoid units, as shown in fig 1.
Columns are themselves composed through lateral, inhibitory
connections into modules, which are in many respects identical
to the attractor networks used in [9]. Columns turn out to be
essential for controlling the rate of signal propagation in order
to support sequencing and convergence detection. Modules
can themselves be composed with feedforward connections
into complete circuits. The highest layer of organizational
abstraction allows construction of circuits from characteristic
combinations of storage and gating modules. All of these
mechanisms are consistent with known cortical organization,
since they require only structured vertical arrangements of
densely connected neurons with lateral connections to other

columns, along with long-distance, vertical projection axons
[10].

Here we highlight the key points of a proof that such
models allow for general symbolic processing by showing that
any Turing machine can be mapped in a straightforward way
onto a system of these mechanisms. (We point out that while
universal computation is certainly a capability of systems of
simpler neurons – e.g., binary threshold units – it is not clear
that systems that more closely approximate real neurons have
this property.) We can therefore conclude that systems of
sufficiently many cortical columns are capable of carrying
out any algorithm. Under the Church-Turing thesis, this is
all that any physically realizable computational device can be
expected to do. In section II we discuss the neural building
blocks that handle the shortcomings of [9] and also make
the Turing machine mapping possible, and in section III we
discuss the mapping itself through the use of a simple example.

II. ADDITIONAL MECHANISMS

The extension to [9] that we propose still relies entirely
on the feedforward composition of locally recurrent, modu-
lar networks. In the extended architecture, however, a few
different classes of modules exist which differ from each
other in respect of their strength of internal lateral inhibition,
their threshold terms & � , and the degree to which they delay
propagation of input signals and act as a low-pass filter for
them. It is the last two of these properties that rely on the
cortical column mechanism.

A. Controllable propagation delay for convergence detection
and self-terminating productions

A significant problem with the production system analogue
in [9] is that compositions of modules with feedforward
connections run into timing difficulties. In [9], the symbolic
controller can be removed if the action network has the
property that it only sends output to the rest of the system
when it has entered some � -neighborhood of an attractor
corresponding to an action, and if the rest of the system can
then inactivate the action representation. This is a special case
of the following situation.

Consider a module
�

in which the symbolic value � is
represented by high activity in a subset of

�
’s units and low

activity in the rest. Call the set of high-activity � units �����	��
 .
We say that

� � ����� when none of
�

’s units are highly
active.

It is often useful to implement a self-terminating production
of the form

��� � � � � ��������� � ��� ��� ���'� � � ������� � (2)

using excitatory connections from
�

to � and inhibitory
connections from � to

�
. Such an arrangement allows

�
to

activate � when some event occurs.
�

therefore acts as an
indicator that some process should take place, and � acts as
the process that handles

�
’s event. � eliminates

�
’s event

indication but can still maintain the value � indefinitely.

Things do not work as intended with straightforward com-
position, however, because as �����	�
 in

�
begins to activate

�����	�"! in � , �����	� ! begins to inhibit �#���$�
 . The result is that
the two modules wind up approaching an equilibrium in which
�����	�"! never quite becomes active, and �#���$�
 never quite shuts
off. It can be shown that it is not possible to manipulate the
weights between the if module

�
and the then module �

and the � and & � parameters of the activation function of
any of the units involved so that �����	�
 can drive �#���$��! to
a value arbitrarily close to 1, and �����	� ! then drives �����	�"

arbitrarily close to 0. This can, however, be accomplished if
large changes in �����	�
 take sufficiently long to produce large
changes in �����	� ! . Two potential sources of propagation delay
are: 1) connections between modules with sufficiently slow
propagation rates, and 2) chains of units in between

�
and

� that multiply the effect of a single unit’s time constants.
We chose instead a more economical mechanism with greater
flexibility in controlling propagation rate, and we hypothesize
that this is a functional role of cortical columns in the brain.

B. Cortical columns

The cortical column-inspired version of a module is
schematically depicted in fig 1. Instead of a single, fully
connected recurrent network, a module now consists of two
identical copies of such a network. One copy functions as
the input interface to the module, and the other functions
as the output interface. Each input layer unit "%$&%"� � sends
a feedforward connection to its counterpart '(� �%"� � in the
output layer via an intermediate unit,)*�,+ � . The)*�,+ � unit is
inhibited by a self- exciting unit - �/.10$243 657� � that also receives
input from "%$&%"� � . The - �8.1092:3 ;57� � unit serves to prevent
rapid transmission through)*�,+ � of large jumps in activation
of "%$<% � � when a gain signal to - �8.1092:3 ;5=� � is high. When
the gain signal is low, - �/.=092:3 ;5=� � never becomes significantly
active, and transmission through)*�,+ � is as fast as the time
constants in the activation function will allow (these constants
are all set to 1 in our simulations).

Propagation delay is thus a controllable parameter of a
module which is tunable by external gain signals that can
themselves be generated by units in other modules. In the
simulation discussed here, all gain signals are fixed at either
0 or a single larger value. (In future models, these gain
signals can perhaps best be modeled as the diffuse effect of a
neurotransmitter such as dopamine.) Fig 1 shows the effect of a
large gain value in all the units of a column � . Notice that delay
is accompanied by low-pass filtering which tends to discretize
the input to the column. This discretizing function itself may
play a useful role in symbolic processing, but for our purposes
here, propagation delay is all that is important. Nevertheless,
this behavior motivates the choice of the term - �8.1092:3 ;5=� � : the
- �8.1092:3 ;57� � resists changes in input layer representation of a
value near 0. Similarly, the ' $3�7243 657� � tends to hang on to
values near 1 in the face of a drop in input layer activation.

Hebbian learning can be used to modulate the delay char-
acteristics of a column so that delays of arbitrary precision
(up to the limit imposed by noise in neural transmission)

can be learned. With columns, the gain signal can simply be
tuned up or down through Hebbian or anti-Hebbian synaptic
modification of the connection from the gain signal generator
to - �/.10$243 657� � and/or ' $3�7243 657� � .

The delay and filtering properties of columns derive from
weak positive feedback in the - �/.=092:3 ;5=� � and ' $��=2:3 ;57� �
units. When the gain signal to the - �/.10$243 657� � unit is high and
"%$<% � � is low, the - �/.=092:3 ;5=� � unit becomes highly active. At
this point, a jump upward in "!$<%"� � causes - �8.1092:3 ;5=� � to re-
ceive stronger inhibition, but positive feedback in - �/.=092:3 ;5=� �
resists this inhibition, with the effect that - �8.10$243 657� � winds
down slowly. Only when it has reached a level near 0 is the
) �,+ � unit disinhibited enough to transmit signals to ' � �%"� � .

����� � �	��� �
����������� �
��������
end:����������� ��� ��� ! "$#�%	&�! %�' ���

l input����������� ��� ��� ! "$� ��"�� (�� !)�' �*� ��+�,�!
����������� ��� ��� ! "$%-&���� ! ��!)�'

y input

Connection Legend:
Excitatory connection

Inhibitory connection

Column Functions: Propagation Delay, Discretization/Low-pass filtering

Net external input to column

Input

Mid

Output

One-Latch

Zero-Latch

Input

Output

Modules: Columns can be .�/ anized with lateral
inhibition into modules
whose input and output 0 1 2 / 3 1 / 2*2-4�5�6 7 alent to 8 .�9�: 6 2�0 ;=<�2�> ? orks with
orthogonal memories

Fig. 1. The cortical column mechanism provides a means for an excitatory
gain signal to delay signal propagation and filter high-frequency inputs to a
column by a variable amount. Here the effects of a maximal gain signal are
shown – the activation plots are generated with @BADCFEHG and IJE�G C�EHG units only
weakly self-exciting, in order to show effects clearly.

We now define a few terms to enable a more formal
description of the dynamics. A self-exciting unit is a unit �
whose output value

� �
is weighted by a nonzero synaptic

strength 1 � � and added to the � �
 "!$ � term of its own activation
function. Non-self-exciting units have 1 � � � � . A weakly self-
exciting unit � has 	 K 1 � �ML � K$N . A strongly self-exciting unit
has 	 K 1 � �PO � K$N .

The dynamics of self-exciting units can be qualitatively
characterized by the cobweb diagrams shown in fig 2. In
these diagrams, the horizontal axis represents current input
from a unit to itself, "%$� � � 1 � �RQ � �

, and the vertical axis
is output activation. External input is held constant. Self-
excitation means that at time

�
a unit � will be adding a

proportion of its output to its own net input term at any given
moment determined by the weight 1 � � . Thus, a unit’s input to
itself at time

�
is determined by tracing from the current output

value on the sigmoid curve horizontally to the line 	 K 1 � � Q "!$� � ,

Attractor 1/Starting Point 2

Attractor 2

Starting Point 1

Self-excitatory input for a weak self-exciter at time t Self-excitatory input for a strong self-exciter at time t

O
ut

pu
t a

t t
im

e
t

Effective activation function
during constant excitatory
external input

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Left: The behavior of a weakly self-exciting unit with external input
held constant at two different levels. The leftmost curve might correspond to
a SUTWV�XZY\[G-]_^ unit with high gain and no inibition from @BADCFEHG�` , while the
rightmost curve corresponds strong inhibition from @�ADCFE�G�` . Right: A strongly
self-exciting unit with three different levels of external input. The leftmost
curve corresponds to a value sufficient to make an inactive unit latch on to a
high value, and the rightmost reflects a value sufficient to wipe out a latched
high value. The middle curve reflects activation-based maintenance of a value
in the absence of strong external input.

and from there vertically to the horizontal axis. The rate of
change of

� �
for a self-exciting unit with constant net external

input acb� � � � �
 "!$ � � "%$� � from other units is equal to the size
of the ‘stair step’ so formed between the sigmoid activation
curve and the line 	 K 1 � � Q "!$� � (hereafter called the reference
line). The system approaches the intersection of the activation
curve and reference line whenever the slope of the reference
line is greater than the slope of the activation curve at the
point of their intersection.

The behavior of the system therefore depends critically on
the ratio of � to 1 � � and on & � . Weakly self-exciting units
have activation curves that intersect the reference line at only
one point, because the activation curve has slope � K$N at the
point of inflection, and for a weak self-exciter, this slope is
shallower than that of the reference line. Strong self-exciters
may have one, two, or three intersections, depending on the
value of & � .

Importantly, external inputs to a self-exciting unit � effec-
tively cause the activation sigmoid to shift left or right along
the "%$� � axis for excitatory or inhibitory input respectively.
Variable delay characteristics thus derive from the fact that
a high gain signal shifts the - �8.1092:3 ;5=� � activation curve
leftward. With low gain, &edUf�g�hZi�jZk-l�m n causes the activation
curve to sit far to the right, so that it intersects the reference
line very near 0. With high gain and "%$&%"� �po � , it intersects
the reference line at a value near 1. In the high gain regime,
a value of nearly 1 at "%$&%"� � sends inhibition to - �/.=092:3 ;5=� �
that shifts it back rightward so that the curve is close to the
reference line but intersects it near 0 (see fig 2, left). In this
case, a large number of small, roughly equal size stair steps
indicates slow, steady decay of - �/.=092:3 ;5=� � , and therefore slow
transmission of the "%$<% � � value to '(� % � � .
C. Latches and Gates

In production systems, a central clock pulse synchronizes
the discrete beginnings and endings of production firing, but
it seems unlikely that there is anything equivalent to a central
clock pulse sent to all neurons in the brain. It is more likely

q0 q1 q2 q3

qReject qAccept

1→1,R 1→1,R

∪→∪,L

∪→∪,R

1→∪,L

1→∪,L

+→1,R

+→+,R

Fig. 3. A simple unary adder Turing machine. It moves right on the tape
until it sees a +, which it replaces by a 1. Then it erases two 1s from the end
of the second argument.

that asynchronous timing of processing events occurs. Latches
and gates are the mechanisms we propose to allow for such
distributed, asynchronous control.

In [9] and the neural model shown in fig 4, modules collect
and integrate the outputs of other modules in order to compute
their own outputs. But the components of a circuit may require
the synchronous arrival of signals from multiple upstream
modules in order to compute correctly. Timing problems like
these are handled in digital logic design by buffering values
in registers whose values are updated at each clock pulse.
Here, the analogous structure is a latch, which uses strong
self-excitation to buffer its values until inhibited strongly by
an external signal (its effective activation function must be
shifted roughly to the position of the leftmost curve in the
righthand diagram of fig 2 to shut it off once active).

A gate is a copy of a module that can transmit the symbolic
value of that module when activated, but can also be inhibited
by external control signals while the original module maintains
its original value.

III. TURING MACHINE EMULATION

We now have all the pieces necessary to construct circuits
that emulate Turing machines. A Turing machine consists of a
finite state machine that controls the operation of a ‘tape head’
that moves left and right over an infinitely long memory tape,
reading and writing one of a finite set of alphabet symbols at
each transition of the machine. The behavior of a machine at
any step of processing is determined by the current state of
the control mechanism and the alphabet symbol in the current
tape cell.

The circuit shown in fig 4 emulates the Turing machine
shown in fig 3. This circuit is a unary adder: it computes
the sum of two natural numbers � and � represented as a
sequence of ��� � 	�� 	 ’s and ��� � 	�� 	 ’s respectively. Thus� � 	 is represented as 	�	 	 � 	 	 � 	�	 	 	 , which is the unary
encoding for 3.

A. Finite State Controller

The finite state control circuit depicted in the top half of fig
4 stores current states and computes the transition function by
computing the next state, emitting a symbol to be written to the
current tape cell, and emitting a tape head movement direction.
The last two signals are sent to the tape emulation circuit
shown in the bottom half of fig 4. Some modules are shown
with an activation plot that covers a few important windows of
time during a single transition of the emulated Turing machine.

All windows in these diagrams begin and end at the same
cycles of the Matlab simulation.

The current state is stored in the module � at the top of
the diagram. The boxed number 1 indicates that the flow of
activation during a single Turing machine transition is entirely
determined by the contents of the modules in the gray box
labeled 1. � is a winner-take-all, latch module in which the
column representing the current state is highly active (its "%$<% �
and '(� % � are near 1), and the other columns, inhibited by
the active column through lateral inhibition in the "%$&%"� and
'(� % � layers, have "%$&%"� and '(� �%"� near 0.

The current tape symbol is stored in the module � . At the
appropriate times, the values of � and � flow to �(� 3 � and� � 3 � , and these values in turn excite a set of Conjunction
nodes. Each Conjunction responds strongly only to a single
conjunction of current state and current symbol. Conjunction
nodes excite the columns in ��� . �# � , TapeHead and Qnext
that represent the symbolic values specified by the transition
function of the emulated Turing machine. It is important that
only the ��� . �# � symbol be transmitted to the tape mechanism
at this point. If the TapeHead signal were to leak out prema-
turely, the tape mechanism in fig 4 would move to a different
tape cell prematurely (note the distance between time steps 7
and time 8 in the activation plots of fig 4 – these time slices
show that TapeHeadGate does not become active until well
after ��� . �# �
	�3 �). Similarly, the next state symbol in Qnext
should not overwrite the current symbol in � , because the
current transition is not complete at this point, and an overwrite
will prevent the full transition from being carried out. Thus a
set of gates are called for: ��� . �# ��	 3 � , TapeHeadGate and
QnextGate. Both ��� . �# ��	 3 � and TapeHeadGate make use of
strong self-excitation at the "!$<%"� layers and weak connections
from ��� . �# � and TapeHead to keep their values arbitrarily
near 0 until release from inhibition by the timer, at which
point, strong self-excitation allows these gates to emit '(� % � �
values arbitrarily near 1 (see fig 2, righthand diagram). This
proves to be necessary in order for these representations to
have their effects at the proper times.

The clock circuit shown at the top of the finite state
control in fix X times transitions of the simulated Turing
machine. While the node Transition is active, the current tape
symbol and state supporting the current transition are protected
from overwriting by Transition’s inhibition of � $3�Zb� �	 3 � and
� $��Wb� 	�3 � . After a sufficient amount of time has passed for
the tape head mechanism to complete its processing, the last
module in the timer sequence inhibits Transition, allowing the
new symbol and new state to flow into � and � . At the same
time, the gates that activate to allow this flow inhibit �(� 3 � and� � 3 � , and the gates that allow control signals to flow to the
tape mechanism are inhibited, ending the previous transition
and preparing the next one by loading the new symbol and
state (time steps 11 and 12 in fig 4).

B. Tape

The tape mechanism has to carry out a few major functions.
First, when the finite state control in fig 4 is loading new

LEGEND:
(a) A three-column module with � ��� self-excitation and lateral inhibition – the column �����
	 to it
denotes the columns comprised by the module;
(b) A similar module with strong enough recurrent ����� itation to latch onto its current value;
(c) A �� �
������� 	�� ke-all module with strong enough lateral inhibition at input and output layers to
converge on dominance by one column;
(d) A delay module with ���
� ���������
�
��� delay magnitude (da � ����� = � ���
� ���);
(e) A � ��� threshold module. Modules can have any any combination of properties denoted by (b)-(e);
(f) A !������
!������"����� inhibitory connection, a !������
!������"����� ����� itatory connection, and a self-terminating
productions denoted with thicker lines and involving bidirectional connections.

#%$�&& #%$�&#%$'&&

ΣnextGate

Σwritewrite

ΣwriteGatewriteGate TapeHeadGateTapeHeadGate

Qnext

Σgategate

QnextGate

Qgate

ConjuncConjunc

QΣ

#%$'&

1
+
∪

1
+
∪

11
++
∪∪

1
+
∪

1
++
∪

LeftLeft

LeftLeft

q0
q1
q2

qR
qA

q0
q1
q2

qR
qA

q0
q1
q2

qR
qA

q0
q1q1
q2

qR
qA#($�&

#%$'& #($�&

#%$'& #%$'&

Transition

On

On

TransTimer5

1

2

3

4
4

5 7

Latch

Delay Source

Inhibitory Connection

Excitatory Connection

Module

q0
q1
q2

q0
q1
q2

q0
q1
q2

q0
q1
q2

q0
q1
q2)+*-,

Winner-take-all

a)

c)

d) e)

b)

f)

Self-terminating production

CellX+1_Left CellX+2_Left

CellX_Right CellX+1_Right

CellX_Write

CellX_Read

.0/21
e Cell X

Offset

Offset

CellX_BufferCellX_Buffer

Write/Move TransitionDone

304�5304�5

304�5

On

On On

Offset
On

On

On

CellX+1_Marker

CellX+1_ReadChokeCellX+1_ReadChoke

.0/21
e Cell X+1

.6/71
e Cell X+2 — ∞

Offset

Offset

CellX+1_BufferCellX+1_BufferCellX+1_Buffer

304�5304�5

304�5

Offset
On

On

On

On
On

On

On

On

CellX_Right

On

On

+
∪

6

8

9

8

7

10

10

10

12

12

13 13

11

11 11

1
+

1
+
∪

1
+
∪

1
+
∪

1
+
∪

1
+
∪

ΣwriteGate 1

CellX_Write 1

Σ 1 1+

ΣnextGate 1+

CellX_Buffer 1+

CellX_Read 1+

Q q0 q1

QnextGate
q0 q1

Write/Move On

TapeHeadGate On

CellX_Right On

CellX_Marker On

CellX+1_Marker On

CellX_ReadChoke On

CellX+1_ReadChoke On

CellX+1_Read On

TransitionDone
On

1 56 7 8 9

10

11

12

13

Time

Output unit
activation

Fig. 4. This circuit implements the finite state controller and tape of the unary adder Turing machine in fig 3. Numbered boxes indicate the flow of control
as the machine starts in state 8:9 , reads a ; in tape cell < , begins to write a 1 to cell < , moves the tape head right to cell <=;?> and transitions into state
8@> . For some modules, the time course of activation of the output layer is plotted along the right side of the diagram. Numbered boxes also correspond to
time slices through these plots and denote that a time step is significant because of critical changes in the modules so numbered in the connection diagram.
The plots also show the symbolic value represented by the most active IJEHG CFE�G ` unit in a module as time progresses.

symbol and state values, the tape must provide the tape
symbol stored at the current tape cell. When the control circuit

issues a write command, the current cell must overwrite its
current value with the new one. When a tape head movement

command is received, the current cell must activate the correct
next cell. A significant amount of the complexity of the tape
circuit derives from the need to execute precisely one write and
one head movement per simulated transition. This precision
requires the use of self-terminating productions, labeled with
bold arrows in fig 4, and therefore requires the use of a
propagation delay device.

The unique currently active cell � is denoted by high ac-
tivity in the CellX Marker node in that cell and low activity in
the other marker nodes on the tape (note the lack of activation
overlap in the plots for CellX Marker and CellX+1 Marker
in fig 4 – these activations are separated by time steps 9
and 10). In all tape cells, the symbol stored at that cell is
represented by the activity in the CellX Buffer module that
persists throughout all transitions unless overwritten. Reading
can only occur when the CellX Marker node is active and the
CellX ReadChoke node is inactive. Writing can only occur
when both the CellX Marker node is active and a strong write
signal is received by ��� . �# �
	 3 � .

A write operation is asynchronously timed: only when the
CellX Write node is very active can a write occur, and as
soon as this node becomes active, it activates the Write/Move
node. This node in turn terminates the write operation and
initiates the tape head movement operation. The Offset node
at the top of each tape cell in fig 4 is necessary to counter
the cumulative effect of an infinite number of CellX Write
nodes on the single Write/Move node. Only one CellX Write
node is significantly active at any given moment, but all such
nodes are active at some small value greater than 0, and the
offset nodes send a constant inhibitory output that cancels
this baseline activity and makes the net effect on downstream
modules approximately 0.

Once the Write/Move node is active, the TapeHeadGate
node receives sufficient excitation for the tape head move-
ment control signal to be allowed through. At this point
(time step 9), that signal combines with the effect of the
unique CellX Marker node to activate a single transition node,
CellX Left or CellX Right. This activation is part of a self-
terminating production that allows the transition node to latch
onto a high value while at the same time inhibiting the
CellX Marker node. In turn, a second self-terminating produc-
tion activates Cell(X+1) Marker and inactivates the transition
node. Prior to that node’s inactivation, it also activates the
TransitionDone node. This is necessary to inactivate the Tape-
HeadGate module so that multiple transitions do not occur.
All timing in these operations is asynchronous and control is
distributed among the modules involved in the operations.

At this point, the TransitionDone signal could be used to
issue a ‘next transition’ command to the finite state control
mechanism. This is not how the example demonstrated in fig
4 was constructed though, so instead, the system waits for the
timer to expire.

IV. CONCLUSION

We currently have a simulation of the unary adder in
fig 3 which appears to handle arbitrarily large inputs. A

formalization of the mapping used for that simulation allows
us to prove that any Turing machine can be translated into
a neural network of the type described here, although the
details of that proof have not been given. In particular, we can
translate any universal Turing machine into such a network.

The significance of this result is twofold: 1) that biologically
plausible neural cognitive models such as [9] are capable
in principle of arbitrarily complex algorithmic computation,
with complexity limited only by number of neurons, and
2) that the particular mechanisms employed in the map-
ping – activation-based short-term memory, productions, self-
terminating productions, gates and clocks – together provide
critical functionality for neural models of higher cognition.

It is interesting to note that, while we do not address
synaptic plasticity in this model, synaptic weights are the
only parameters that vary between modules with different
behavior in terms of latching, winner-take-all dynamics, and
propagation delay. It is useful to vary the activation thresholds
& � of different neurons, but the � � parameters can be uniformly
equal to � throughout the model.

We emphasize that we our claim of biological plausibility
extends only to the components of these circuits up to the
hierarchical level of latches and gates. We do not advocate
modeling cognition simply by translating arbitrary computer
code into neural algorithms of the kind used in the proof we
have sketched. In particular, we do not think that the tape
mechanism described here ought to serve as the fundamental
mechanism for short-term memory storage in cognitive models
(such a system would not be conducive to associative recall).
Our purpose has been simply to show that columnar attractor
networks, in principle, have what it takes to compute. Nev-
ertheless, mechanisms similar to the tape could be used as
a fundamental building block for hierarchical or associative
chaining methods of sequential motor programming.

REFERENCES

[1] J. Anderson and C. Lebiere. The atomic components of thought.
Lawrence-Erlbaum Associates, 1998.

[2] S. Dehaene and J. Changeux. A hierarchical neuronal network for
planning behavior. Proceedings of the National Academy of Science,
USA, 1997.

[3] J. M. Fuster and G. E. Alexander. Neuron activity related to short-term
memory. Science, 1971.

[4] J.J. Hopfield. Neurons with graded response have collective computa-
tional properties like those of two-state neurons. Proceedings of the
National Academy of Science, USA, 1984.

[5] J.C. Houk and S.P. Wise. Distributed modular architectures linking
basal ganglia, cerebellum and cerebral cortex: their role in planning
and controlling action. Cerebral Cortex, 1995.

[6] D.E. Kieras and D.E. Meyer. An overview of the epic architecture
for cognition and performance with application to human-computer
interaction. Human Computer Interaction, 1997.

[7] J. Laird, A. Newell, and P. Rosenbloom. Soar: an architecture for general
intelligence. Artificial Intelligence, 1987.

[8] A. Newell and H.A. Simon. Human problem-solving. Prentice Hall,
1972.

[9] T. A. Polk, P. A. Simen, R. L. Lewis, and E. G. Freedman. A
computational approach to control in complex cognition. Cognitive
Brain Research, 2002.

[10] E.L. White. Cortical circuits: Synaptic organization of the cerebral
cortex, structure, function, and theory. Birkhauser, 1989.

