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Abstract

Cognitive slowing is a feature of problem solving per-
formance by Parkinson’s patients. Here we present a
computational model of the Tower of London problem
solving task that provides a straightforward explanation
of this latency impairment. The model is a neural net-
work consisting of a set of idealized neurons whose ac-
tivation levels are continuously varying quantities rang-
ing between 0 and 1, organized hierarchically into a col-
lection of structured, columnar assemblies. The model
differs from many neural network models in that it in-
tentionally approximates the discrete stages of process-
ing and rule-based computation of production systems.
It differs from many symbolic models in that it does
not assume an instantaneous transition between differ-
ent stages of processing and does not rely on a central,
system-wide clock signal. As a result, the model faces
timing problems that can prevent it from approximat-
ing an idealized discrete-time system closely enough to
perform symbolic computation. The columnar assembly
provides a solution to these problems by imposing a di-
rection on the flow of activation between units and by
controlling the rate of that flow. Columns are proposed
to play the role of distributed timers implemented in
cortical columns and frontostriatal loop circuits in the
brain. Dopamine depletion in Parkinson’s is proposed
to reduce the rate of information transmission through a
frontostriatal timer circuit critical for the generation of
subgoal representations in prefrontal cortex. The model
fits latency impairments in problem-solving by Parkin-
son’s patients relative to controls and predicts that only
problems that require the generation of subgoals will
produce a significant latency impairment in Parkinson’s
patients.

Contribution of prefrontal cortex and
basal ganglia to problem solving

Many researchers have noted the similarity between cog-
nitive impairments in patients with Parkinson’s disease
(PD) and patients with lesions of the prefrontal cortex
(PFC). Both groups show impairments related to prob-
lem solving, planning and set-shifting (Owen et al., 1992;
Owen et al., 1995). Both groups are impaired on the
Tower of London problem solving task depicted in Fig. 1
(which is the task that we model). Prefrontal patients
have difficulty achieving an optimal solution to the puz-
zle (a solution trajectory that involves a minimal number
of moves), but only when the required number of moves
to solution exceeds three (Shallice, 1982). The same pat-
tern of impairments has been seen in severe cases of PD
(Owen et al., 1995) (although another study showed no

such accuracy impairment (Owen et al., 1992)). Here we
propose a computational account of the function of brain
structures affected in both conditions that may explain
the similarities and differences of these cognitive deficits.

PD involves the death of dopamine-producing neu-
rons in the substantia nigra that project to the striatum,
and it is this anatomical fact that suggests a connection
between the effects of PD and prefrontal lesions. Pre-
frontal areas of cortex are connected back to themselves
by multi-synaptic ‘frontostriatal loops’ whose first seg-
ments consist of excitatory axonal projections from deep
cortical layers to the striatum in the basal ganglia. These
striatal neurons send inhibitory projections to neurons in
the globus pallidus and subthalamic nucleus (also con-
sidered structures of the basal ganglia). These in turn
inhibit neurons in the thalamus that send excitatory pro-
jections back to the areas of cortex near the starting
points of the loops. At each stage, a notable degree of
topographical organization is seen, such that the loops
can be considered to be, to some degree, segregated and
parallel (Alexander, DeLong & Strick, 1986). Function-
ally, signals from cortex to the basal ganglia have the
effect of disinhibiting the thalamus and exciting cortex
in a form of positive feedback.

In the striatum, dopamine appears to potentiate
the excitatory effect of cortical glutamate received by
medium spiny neurons, as well as to modulate synaptic
plasticity (Alexander et al., 1986). A natural hypoth-
esis, therefore, is that the disruption of frontostriatal
loops (which are one means by which PFC communi-
cates with itself) in PD mimics the effects of prefrontal
lesions, and that this is why the two patient groups ex-
hibit similar cognitive deficits. However, while similari-
ties exist between prefrontal and Parkinsonian cognitive
impairments, there are salient differences. In all levels
of PD severity, impairment in problem solving latency
(the time to begin problem solving once a problem has
been presented) is seen (see Fig. 2). Interestingly, this
impairment again appears only on problems requiring
more than three moves. But a similar latency effect is
not seen in prefrontal patients (Owen et al., 1992; Owen
et al., 1995).

We have previously argued that the primary role of
dorsolateral PFC in problem solving is to represent sub-
goals that guide the selection of actions (Polk et al.,
2002), thereby providing a potential explanation of sub-
optimal problem solving in prefrontals as resulting from



a failure to select actions consistent with subgoals. In
this paper, we argue that latency impairments observed
in PD arise as a result of slowed generation of subgoals
after action selection impasses occur.

Tower of London task

The Tower of London (TOL) task, is shown in Fig. 1.
This task has been used extensively to assess planning
impairments and is thought to depend crucially on goal
management (Shallice, 1982). It is a variant of the Tower
of Hanoi problem and involves moving colored balls on
pegs from an initial configuration until they match a goal
configuration. Unlike the Tower of Hanoi problem, there
are no constraints specifying which balls can be placed
on which others, but the pegs differ in how many balls
they can hold at one time (the first peg can hold one
ball, the second peg can hold two, and the third peg
can hold three). There is typically one red, one green
and one blue ball. Participants are often asked to try
to figure out how to achieve the goal in the minimum
number of moves and are sometimes asked to plan out
the entire sequence of moves before they begin (Shallice,
1982). Normal, prefrontal and Parkinson’s performance
from Owen et al (1995) is shown in Fig. 2
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Figure 1: The Tower of London task.
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Figure 2: PD patients display latency impairments
(slower planning prior to first move) in the Tower of Lon-
don task. Increased latency relative to control subjects is
shown by patients at two different stages of the disease,
with and without medication in the early stage.

Components of a neural cognitive
architecture

For the most part, the model we present works by im-
plementing in neural networks some of the computa-
tional assumptions of symbolic production systems. We
have argued previously that there is a natural mapping
from such symbolic systems onto the brain (Polk et al.,
2002). Production systems typically assume a produc-
tion matching cycle that occurs at regular intervals gov-
erned by a central clock, and that the matching and

firing of a production is an all-or-none affair. In the
brain, however, there is no evidence for a single, system-
wide clock signal capable of sequencing events at the
level of simple cognitive operations. For this reason,
the architecture we present makes a commitment to dis-
tributed timing, in which components at the lowest level
time their own operations. Also, since cortical neurons
appear to encode information in some form of analog,
rather than binary, code, the architecture makes a fur-
ther commitment to analog representations of the state
of a system. These commitments require an approach to
duration encoding and sequential processing that is dif-
ferent than the one taken in almost all digital systems.
This approach also sets the architecture apart from pre-
vious connectionist implementations of production sys-
tems such as DCPS (Touretzky & Hinton, 1988).

The architecture we present consists of modular
winner-take-all networks composed hierarchically. Each
module is layered, with distinct input and output layers,
and an intermediate layer that delays propagation from
input to output by a controllable amount. In fact, the
modules are themselves constructed out of a more basic
primitive, a structured column of neural units. Columns
are arranged in parallel with lateral inhibitory connec-
tions to form modules. Individual units are taken to
model the spatiotemporal average firing rate of a popu-
lation of spiking neurons.

Model neurons

A unit’s activation at any moment is represented by
a number between 0 and 1. The activation of unit ¢,
Vi € [0, 1], is determined by a standard nonlinear differ-
ential equation that is taken to model the firing rate of
a population of neurons, possibly averaged over time so
that more recent firing contributes more to the average
than firing that occurred longer ago:

av; 1
dt Vit 1 + e—*(NetIn;—B;) (1)

where Netln; = Z?Zl w;; V;, and w;; is the synaptic
weight on the connection from unit j to unit ¢ (Cohen
& Grossberg, 1983). A small random noise term is also
often added to V;. The sigmoid function f(Netin;) =

W forms a curve defining equilibrium values

of activation for any given (constant) level of net input.
Curves of this type are depicted in Fig. 3.

Self-excitation

Positive feedback within individual units plays an im-
portant role in what follows. We define a self-exciting
unit to be a unit ¢ whose output value V; is weighted by
a nonzero synaptic strength w;; and added to the NetlIn;
term of its own activation function. Non-self-exciting
units have w;; = 0.

We state without proof that the dynamics of self-
exciting units receiving constant inputs from other units
are completely characterized by the ‘self-excitation dia-
grams’ of Fig. 3 (proofs can be found in Simen, (2004)).
In plot A, two different activation curves are shown.



Each corresponds to a different level of net excitation
received from other units: net excitation results in a
leftward shift of the activation function by precisely the
amount of the excitation, and inhibition results in a sim-
ilar rightward shift. The horizontal axis reflects only in-
put to a unit from itself. A stair step trajectory formed
between the shifted activation function and the straight
line with slope 1/w (hereafter referred to as the ‘reference
line’), where w is the self-excitatory connection strength,
determines the equilibrium level of activation ultimately
achieved by the unit (assuming no change in external
inputs), and the size of the stair steps determines the
speed of approach to the equilibrium value (larger steps
imply faster approach). As a result, strong and weak
self-excitation results in qualitatively different behavior.
With weak self-excitation, activation that ramps up or
down at a controllable and relatively constant rate is
possible. With strong self-excitation, depicted in plot B,
approximately all-or-none activation levels and memory
in the form of reverberating activation are possible.

2 slope = 1/w/_[

" [Effective activation function
0.9 [ during constant excitatol 0.9
0.8 | external input —__ 0.8

207 0.7

0.6 0.6

one
0.5 y Attractor 2] 05
04 04

1
1
! N
T equilibrium
h 1
1
T 4 I Two attractors,
1 one unstable
=] equilibrium
S o3 Starting Point 1 03
01 ~ Attractor 1/Starting Point 2 01 s «—1 One attractor

0.2 0.2
0 0

0 01 02 0304 0506 07 08 09 1 0 0102 0304 0506 07 08 09 1

A Selfexcitatory nputattime ¢ (Inti(t)) B

One attractor,

im

tput at ti

Self-excitatory input at time ¢ (Intl.(t))

Figure 3: Self-excitation diagrams for units with weak
(A) and strong (B) recurrent connections to themselves.
The rate at which a unit’s activation approaches the
nearest attractor is determined by the height of the stair
steps depicted.

Decision-making/memory modules

The basic structural primitive of the architecture is a
column consisting of a small number of units, but the
architecture is easier to approach by beginning with a
simple, modular network structure that does not in-
volve columns. This structure, henceforth called sim-
ply a ‘module’; is a fully connected recurrent network in
which each unit is connected with a bidirectional con-
nection to every other unit, and in which each unit also
excites itself with a strength of 0 or more. The typi-
cal mode of operation of a module is as a winner-take-all
network, in which one unit becomes highly active and all
others become inactive as a result of external input, or
‘votes’. Thus modules collect preferences for various de-
cisions and amplify the preference for the most preferred
outcome at the expense of those less preferred.
Self-excitation diagrams are useful for module design
because they allow a programmer to determine the inter-
module connection strengths necessary to create mod-
ules that act like AND and OR gates and inverters in
digital logic, as well as memory components like latches
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Figure 4: Activation levels in a single column show the
effect of weakening the inhibitory strength of the con-
nection from Input to Delay: an increase in propagation
delay of size At results from slower inactivation of the
Delay unit. Modules organized from laterally connected
columns are shown at the lower left. Input and Output
units model deep and superficial layers of cortex, respec-
tively, and Delay units model the sequence of connec-
tions from neurons in the striatum (STR) to the globus
pallidus (GP) to the thalamus.
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and flip-flops. Most importantly, they allow the setting
of connection strengths that cause modules to implement
an analogue of production matching and conflict resolu-
tion in production systems. Simen (2004) describes this
strength-setting recipe in detail.

Model cortical columns

A physical aspect of electronic digital logic components
that can have major effects on the performance of a cir-
cuit is the internal delay that signals face when propa-
gating through them. In order for high-level descriptions
of circuits to work, their components must satisfy a set of
timing constraints. The same is true for neural circuits,
and a means of adjusting the internal propagation delay
within a module to allow timing constraint satisfaction
is now presented.

In fact, though, the need for control over propaga-
tion is more extensive here than in digital circuit design,
because these internal delays will be the sole source of
time measurement in the architecture, and timing will
be largely asynchronous (without reference to a single,
system-wide clock). For this purpose, the architecture
elaborates on the module concept with a column struc-
ture.

The columnar version of a module is schematically de-
picted in Fig. 4. Instead of a single, fully connected re-
current network, a module now consists of two identical



copies of such a network. One copy functions as the in-
put interface to the module, and the other functions as
the output interface. Each input layer unit, Input, in
addition to the lateral inhibition it sends and receives
from other input layer units, sends a feedforward excita-
tory connection to its counterpart Output in the output
layer. The Output unit is inhibited by a self-exciting
unit, Delay, that also receives inhibitory input from In-
put. The Delay unit serves to prevent rapid transmission
to Output of large jumps in the activation of Input. The
rate of transmission from Input to Output is determined
by how strongly Input inhibits Delay.

Variable delay characteristics derive from the fact that
strong inhibition from Input shifts the Delay unit’s effec-
tive activation sigmoid to the right. Typically the Delay
unit’s activation curve sits far enough to the left that it
has a single equilibrium value near 1. When shifted to
the right, the Delay unit’s activation approaches a new
equilibrium value near 0. If the rightward shift places
the activation curve near to the reference line, this ap-
proach will be slow. A sequence of columns imposing
a propagation delay on a signal propagating through it
can therefore be used as a timer. The effect of weakened
Input — Delay inhibition is shown in Fig. 4. This effect
is at the heart of the explanation of latency impairments
provided here.

Neural model of the Tower of London
task

In the model solver, illustrated in Fig. 5, a set of Sensory
modules, one for each position of the gameboard, is ini-
tialized to patterns encoding the color of a ball at that
position, if any, and these representations then persist
until reinitialized by changes in the environment. They
excite the representations of legal moves in a separate
Move module devoted to action representations, and in-
hibit illegal ones. Attractor dynamics within the Move
module results in the selection of a single action for exe-
cution, completing the simulation of a simple production
of the form: ‘if the red ball is in position X, then place
it in position Y’. In this respect, the model is similar
to the neural network Tower of London model of De-
haene & Changeux (1997). That model, however, did
not explicitly represent subgoals, and that aspect of the
current model is critical to its ability to explain latency
impairments.

Goals and subgoals

In the Tower of London solver, one set of winner-take-all
modules is dedicated to the representation of externally
defined goals and another to internally generated sub-
goals. Activation in the goal modules biases the com-
petition taking place in the Move module, favoring one
column over the others. This biasing is just another form
of production, but the if-condition is semantically spe-
cial: it represents a desired state of the environment.
Further, the biasing strength of such a production is in-
sufficient to activate its then-condition without support
from some other module, as in the case of the Sensory
module just discussed. Technically, this Goal — Move
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Figure 5: Tower of London model schematic. Each oval
is a multi-layer module as depicted in Fig. 4. The high-
lighted convergence timer component is the only com-
ponent to make significant use of internal propagation
delay. Slowing in this component resulting from weak
Input — Delay inhibition is the source of the model’s
latency impairment.

excitation should be considered only a component of a
production of the form: ‘if Goal is X and Percept is Y,
then Do 7.

Convergence timing

The scheme so far described for building problem-solving
neural networks addresses critical issues, but it is not
obvious that a system of continuous-time winner-take-
all modules composed with between-module connections
that form closed loops will work properly. The pre-
frontal /normal model of Polk et al. (2002), for example,
is actually a hybrid neural/symbolic system. It requires
a non-neural component to read the output of a feed-
forward composition of modules with no cycles. This
output emerges in the Move module representing the
current action. If a single, clear winner emerges in this
network during voting by Sensory and Goal modules,
the system takes the prescribed action and then reini-
tializes several modules in the network to new values.
It thereby closes the loop that feeds output information
back into the system. However, in the smoothly contin-
uous systems proposed here, such a process cannot be
instantaneous: new module values will have a nonzero
rise time, and old values will have a nonzero decay time.
Thus a timing mechanism is required for ensuring proper
‘setup’ of inputs for the next cycle of computation.

In many situations, however, an action should never
emerge, because no atomic action can achieve the current
goal. In such a case, the Move module remains near base-
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Figure 6: Time course of Output unit activation in most
modules of the model during the solution of a five-move-
minimum problem, depicted in the Environment panel
at the bottom of Fig. 5. Delay between onset of activa-
tion in NoMovel and NoMove5 defines the time window
in which a move can be selected before a subgoal is gen-
erated. This delay increases as Input — Delay inhibition
is weakened, producing the model’s latency impairment.

line activation, thereby signaling that a subgoal ought to
be generated in order to produce environmental condi-
tions suitable for taking actions to achieve the parent
goal. This raises a second question: for how long should
an election be allowed to continue? Convergence times
within attractor networks (of which winner-take-all net-
works are a special case) are difficult if not impossible to
predict in many cases.

The simple solution presented here is simply to wait
for some period of time after one pattern of activation
has remained approximately unchanged to declare either
a winner or convergence to baseline: the waiting period
can be determined by the cost of waiting too long to get a
true winner relative to the cost of responding too quickly
with a false winner. If we can sample the activation of a
module only after a ‘safety period’ has elapsed, we can
reduce the chance of picking a false winner. If we are able
to construct a timer which is triggered whenever module
activation fails to satisfy the criteria for representing a
winner, and which is inactivated by the emergence of a
winner, we can produce a convergence-to-baseline detec-
tor that is triggered when the timer reaches a threshold
duration without being inactivated. This is the function
of the Convergence Timer mechanism in Fig. 5.

Model performance

Timecourses of activation in key components of the
model are shown in Fig. 6. The problem, shown at the
bottom of Fig. 5, requires five moves for solution and
therefore requires that some balls be moved to positions

other than their final, goal positions. Thus it requires
the internal generation of subgoals for efficient solution.
The Sense modules, like the Goal modules, are initial-
ized at the beginning of the simulation and excite po-
tentially legal moves. A winner, ‘Red to 4’ is selected
at time point A, and the corresponding unit in Move-
Gate is caused to rise to threshold, achieving the move
and wiping out the move-generating command in Move.
At this point, the simulated environment causes an up-
date of the Sense modules, which in turn extinguish any
goal or subgoal activation pattern in the Goal system
or Subgoal which represent goals to create the current
environmental configuration (point B). This allows the
next most preferred goal to be retrieved and worked on,
as can be seen in Subgoal at point C. At no point is the
clock circuit involved.

Now the next goal, ‘Blue to 2’, which is unachievable,
has been selected, and this in turn generates a subgoal to
remove an obstacle. Once a subgoal is selected (‘Green
to 5, since Green is in the target position of the blue
ball, at time point D), the first element of the NoMove
timer sequence begins to ramp up, and finally maximal
activation reaches the last timer in the sequence at time
E (this also happens for the previous goal). This ac-
tivates the Generate module for generating a subgoal.
Finally, the subgoal generation logic computes that the
ball above the green source ball is blue, at time F, and
that the lowest position on a peg which is neither the
source nor the target of the goal is position 1 at time
G, and Subgoal responds to this voting at time H. The
model continues on in this way until eventually solving
the problem in 5 moves, as is shown in the sequence of
moves selected by the model.

Effect of simulated Parkinson’s disease

PD is simulated by reducing the inhibitory effect of Input
connections to Delay units within columns. By weaken-
ing connections, the propagation delay inherent in any
column will be lengthened. For columns in which no
propagation delay is required, the effect of this dopamine
depletion is expected to be minimal. For columns in
which weak Input — Delay connections are needed to
model slow propagation delay, the effect is expected to
be pronounced. The convergence timer that determines
the maximum interval during which computation of a
new move can occur is therefore susceptible to simulated
dopamine depletion.

In problems which do not require the generation of
a subgoal, because all balls can be moved directly to
their goal positions, the convergence timer never needs
to expire: a move will always emerge well before the
time limit. In problems which do require generation of
subgoals (some 3 move problems, and by definition, all 4
and 5 move problems), the timer will expire once for each
subgoal generated in the simulated dorsolateral PFC.

Fig. 7 shows the interactive effect of simulated
dopamine depletion and problem difficulty on the total
time to solution of the Tower of London model. Since
the model does not store plans, the comparison to the la-
tency data of Owen et al., (1995) is based on the notion



that the complete solution of a problem by the model
is equivalent to the complete generation of a plan prior
to execution by subjects (which is assumed to precede
the first move made by the subject — latency in Owen
et al. (1995) is therefore the time from presentation of
the problem to execution of the first move). The model
was run on all possible problems requiring five moves
or less, except for problems which would cause difficulty
for the simple algorithm implemented by the model. In-
cluding modules implementing the heuristics necessary
to solve the remaining problems would not be expected
to change reaction times significantly, because the mod-
ules implementing this logic would not require internal
propagation delay (assuming, that is, that these heuris-
tics did not produce a much larger number of moves, but
this was not what happened in the hybrid model of Polk
et al. (2002)).

Simulated dopamine depletion slows the performance
of the model in difficult problems. This effect is most
pronounced at the five-move-minimum level, and almost
nonexistent at the two-move-minimum level. This supra-
linear increase in latency impairment with increasing
problem difficulty is also seen in the performance of PD
patients vs. controls. Results therefore support the no-
tion that demands for subgoal representation and main-
tenance are at the heart of problem solving impairments
in prefrontals and PD patients in the Tower of London
task.
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Figure 7: Comparison of average simulation reaction
time in solid lines to empirical results in dashed lines
(control subjects) and dotted-dashed lines (medicated
patients with mild PD). More positive values of w, the
connection strength from Input to Delay units, corre-
sponds to increasing severity of PD symptoms.

Discussion

The model presented here provides a potential explana-
tion for latency impairments in problem solving by PD
patients, in accordance with a previous model that po-
tentially explains prefrontal accuracy impairments (Polk
et al., 2002). The structure of the model also hints at
the power of a form of neural network modeling that bor-
rows key computational aspects from production systems
while adhering to parallel distributed, analog represen-
tations of time.

Since dopamine depletion of sufficient severity should
also impact the ability of subgoal representations to
guide action selection according to this model, accuracy
impairments should be expected in severe PD, and this
impairment seems supported by the data (Owen et al.,
1995). More modeling work is necessary before this ex-
pectation can be confidently called a prediction of the
model, however. Conversely, since timer circuits are pro-
posed to contain both a cortical component and a com-
ponent residing in the basal ganglia, the lack of latency
impairments in patients with dorsolateral prefrontal le-
sions remains unexplained. Two possible explanations
that do not necessarily conflict with the model are: 1)
that timing operations are distributed across a larger
area of cortex than just dorsolateral PFC, and thus are
not disrupted by focal lesions; and 2) since the model
only attempts to capture the planning rather than the
execution phase of problem solving, it may be that pre-
frontals show no latency impairment in initiating prob-
lem solving despite disrupted internal timing because
they impulsively begin execution before a plan is fully
developed. Thus they trade off a latency impairment for
an accuracy impairment. Future work in which plans are
stored, evaluated and finally executed will better draw
out the implications of the model presented here.
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